Patents by Inventor Richard Hamilton

Richard Hamilton has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170250305
    Abstract: Die-cutting approaches for foil-based metallization of solar cells, and the resulting solar cells are disclosed herein. Die-cutting approaches for foil-based metallization of solar cells include forming a plurality of semiconductor regions in or above a substrate and forming a patterned damage buffer in alignment with locations between the plurality of semiconductor regions. Additionally, a metal layer comprising a metal seed layer and/or metal foil is formed over the patterned damage buffer. The metal layer is cut by a cutting die at locations between the plurality of semiconductor regions by applying a mechanical force to the cutting die.
    Type: Application
    Filed: February 29, 2016
    Publication date: August 31, 2017
    Inventors: Richard Hamilton Sewell, Benjamin Ian Hsia
  • Publication number: 20170222068
    Abstract: Approaches for the foil-based metallization of solar cells and the resulting solar cells are described. In an example, a solar cell includes a substrate. A plurality of alternating N-type and P-type semiconductor regions is disposed in or above the substrate. A conductive contact structure is disposed above the plurality of alternating N-type and P-type semiconductor regions. The conductive contact structure includes a plurality of metal seed material regions providing a metal seed material region disposed on each of the alternating N-type and P-type semiconductor regions. A metal foil is disposed on the plurality of metal seed material regions, the metal foil having anodized portions isolating metal regions of the metal foil corresponding to the alternating N-type and P-type semiconductor regions.
    Type: Application
    Filed: April 12, 2017
    Publication date: August 3, 2017
    Inventors: Gabriel Harley, Taeseok Kim, Richard Hamilton Sewell, Michael Morse, David D. Smith, Matthieu Moors, Jens-Dirk Moschner
  • Publication number: 20170218586
    Abstract: A flood barrier system includes vertical elements and panels extending between such vertical elements, the foregoing components having various features for inhibiting passage of flood water therethrough. One or more vertical elements may have a multi-layer base plate which forms a watertight seal with vertical gaskets disposed on the vertical elements. One of the vertical elements of the system may comprise a stanchion post which may be formed of extruded aluminum. Another vertical element which may find potential use in certain applications may be secured to a store front mullion. The panels in such system may include specially adapted gaskets to reduce instances of leakage. The vertical elements and panels allow the present flood barrier system to be flexible and readily deployable as a barrier to flood or flood risk.
    Type: Application
    Filed: April 12, 2017
    Publication date: August 3, 2017
    Applicant: Neptune Systems, LLC
    Inventors: John William Knezevich, Guy Richard Hamilton, Joseph Michael Davis, JR.
  • Patent number: 9722103
    Abstract: Thermal compression bonding approaches for foil-based metallization of solar cells, and the resulting solar cells, are described. For example, a method of fabricating a solar cell includes placing a metal foil over a metalized surface of a wafer of the solar cell. The method also includes locating the metal foil with the metalized surface of the wafer. The method also includes, subsequent to the locating, applying a force to the metal foil such that a shear force appears between the metal foil and the metallized surface of the wafer to electrically connect a substantial portion of the metal foil with the metalized surface of the wafer.
    Type: Grant
    Filed: June 26, 2015
    Date of Patent: August 1, 2017
    Assignee: SunPower Corporation
    Inventor: Richard Hamilton Sewell
  • Publication number: 20170179308
    Abstract: Laser foil trim approaches for foil-based metallization of solar cells, and the resulting solar cells, are described. For example, a method of fabricating a solar cell includes attaching a metal foil sheet to a surface of a wafer to provide a unified pairing of the metal foil sheet and the wafer, wherein the wafer has a perimeter and the metal foil sheet has a portion overhanging the perimeter. The method also includes laser scribing the metal foil sheet along the perimeter of the wafer using a laser beam that overlaps the metal foil sheet outside of the perimeter of the wafer and at the same time overlaps a portion of the unified pairing of the metal foil sheet and the wafer inside the perimeter of the wafer to remove the portion of the metal foil sheet overhanging the perimeter and to provide a metal foil piece coupled to the surface of the wafer.
    Type: Application
    Filed: March 8, 2017
    Publication date: June 22, 2017
    Inventors: Robert Woehl, Richard Hamilton Sewell, Mohamed A. Elbandrawy, Taeseok Kim, Thomas P. Pass, Benjamin Ian Hsia, David Fredric Joel Kavulak, Nils-Peter Harder
  • Patent number: 9670634
    Abstract: A flood barrier system includes vertical elements and panels extending between such vertical elements, the foregoing components having various features for inhibiting passage of flood water therethrough. One or more vertical elements may have a multi-layer base plate which forms a watertight seal with vertical gaskets disposed on the vertical elements. One of the vertical elements of the system may comprise a stanchion post which may be formed of extruded aluminum. Another vertical element which may find potential use in certain applications may be secured to a store front mullion. The panels in such system may include specially adapted gaskets to reduce instances of leakage. The vertical elements and panels allow the present flood barrier system to be flexible and readily deployable as a barrier to flood or flood risk.
    Type: Grant
    Filed: May 4, 2016
    Date of Patent: June 6, 2017
    Assignee: Neptune Systems, LLC
    Inventors: John William Knezevich, Guy Richard Hamilton, Joseph Michael Davis, Jr.
  • Publication number: 20170148934
    Abstract: A solar cell can include a substrate and a semiconductor region disposed in or above the substrate. The solar cell can also include a conductive contact disposed on the semiconductor region with the conductive contact including a paste, a first metal, and a first conductive portion that includes a conductive alloy formed from the first metal at an interface of the substrate and the semiconductor region.
    Type: Application
    Filed: February 8, 2017
    Publication date: May 25, 2017
    Inventors: Richard Hamilton Sewell, Paul Loscutoff, Michel Arsène Olivier Ngamo Toko
  • Publication number: 20170133535
    Abstract: A solar cell can include a conductive foil having a first portion with a first yield strength coupled to a semiconductor region of the solar cell. The solar cell can be interconnected with another solar cell via an interconnect structure that includes a second portion of the conductive foil, with the interconnect structure having a second yield strength greater than the first yield strength.
    Type: Application
    Filed: January 19, 2017
    Publication date: May 11, 2017
    Inventors: Thomas P. Pass, Gabriel Harley, David Fredric Joel Kavulak, Richard Hamilton Sewell
  • Publication number: 20170125612
    Abstract: Laser foil trim approaches for foil-based metallization of solar cells, and the resulting solar cells, are described. For example, a method of fabricating a solar cell includes attaching a metal foil sheet to a surface of a wafer to provide a unified pairing of the metal foil sheet and the wafer, wherein the wafer has a perimeter and the metal foil sheet has a portion overhanging the perimeter. The method also includes laser scribing the metal foil sheet along the perimeter of the wafer using a laser beam that overlaps the metal foil sheet outside of the perimeter of the wafer and at the same time overlaps a portion of the unified pairing of the metal foil sheet and the wafer inside the perimeter of the wafer to remove the portion of the metal foil sheet overhanging the perimeter and to provide a metal foil piece coupled to the surface of the wafer.
    Type: Application
    Filed: October 29, 2015
    Publication date: May 4, 2017
    Inventors: Robert Woehl, Richard Hamilton Sewell, Mohamed A. Elbandrawy, Taeseok Kim, Thomas P. Pass, Benjamin Ian Hsia, David Fredric Joel Kavulak, Nils-Peter Harder
  • Publication number: 20170110619
    Abstract: Indentation approaches for foil-based metallization of solar cells, and the resulting solar cells, are described. For example, a method of fabricating a solar cell includes forming a plurality of alternating N-type and P-type semiconductor regions in or above a substrate. The method also includes locating a metal foil above the alternating N-type and P-type semiconductor regions. The method also includes forming a plurality of indentations through only a portion of the metal foil, the plurality of indentations formed at regions corresponding to locations between the alternating N-type and P-type semiconductor regions. The method also includes, subsequent to forming the plurality of indentations, isolating regions of the remaining metal foil corresponding to the alternating N-type and P-type semiconductor regions.
    Type: Application
    Filed: October 16, 2015
    Publication date: April 20, 2017
    Inventors: Richard Hamilton Sewell, Nils-Peter Harder
  • Patent number: 9627566
    Abstract: Approaches for the foil-based metallization of solar cells and the resulting solar cells are described. In an example, a solar cell includes a substrate. A plurality of alternating N-type and P-type semiconductor regions is disposed in or above the substrate. A conductive contact structure is disposed above the plurality of alternating N-type and P-type semiconductor regions. The conductive contact structure includes a plurality of metal seed material regions providing a metal seed material region disposed on each of the alternating N-type and P-type semiconductor regions. A metal foil is disposed on the plurality of metal seed material regions, the metal foil having anodized portions isolating metal regions of the metal foil corresponding to the alternating N-type and P-type semiconductor regions.
    Type: Grant
    Filed: November 30, 2015
    Date of Patent: April 18, 2017
    Assignees: SunPower Corporation, Total Marketing Services
    Inventors: Gabriel Harley, Taeseok Kim, Richard Hamilton Sewell, Michael Morse, David D. Smith, Matthieu Moors, Jens-Dirk Moschner
  • Patent number: 9620655
    Abstract: Laser foil trim approaches for foil-based metallization of solar cells, and the resulting solar cells, are described. For example, a method of fabricating a solar cell includes attaching a metal foil sheet to a surface of a wafer to provide a unified pairing of the metal foil sheet and the wafer, wherein the wafer has a perimeter and the metal foil sheet has a portion overhanging the perimeter. The method also includes laser scribing the metal foil sheet along the perimeter of the wafer using a laser beam that overlaps the metal foil sheet outside of the perimeter of the wafer and at the same time overlaps a portion of the unified pairing of the metal foil sheet and the wafer inside the perimeter of the wafer to remove the portion of the metal foil sheet overhanging the perimeter and to provide a metal foil piece coupled to the surface of the wafer.
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: April 11, 2017
    Assignees: SunPower Corporation, Total Marketing Services
    Inventors: Robert Woehl, Richard Hamilton Sewell, Mohamed A. Elbandrawy, Taeseok Kim, Thomas P. Pass, Benjamin Ian Hsia, David Fredric Joel Kavulak, Nils-Peter Harder
  • Patent number: 9570206
    Abstract: A solar cell can include a substrate and a semiconductor region disposed in or above the substrate. The solar cell can also include a conductive contact disposed on the semiconductor region with the conductive contact including a paste, a first metal, and a first conductive portion that includes a conductive alloy formed from the first metal at an interface of the substrate and the semiconductor region.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: February 14, 2017
    Assignees: SunPower Corporation, Total Marketing Services
    Inventors: Richard Hamilton Sewell, Paul Loscutoff, Michel Arsène Olivier Ngamo Toko
  • Patent number: 9559233
    Abstract: A solar cell can include a conductive foil having a first portion with a first yield strength coupled to a semiconductor region of the solar cell. The solar cell can be interconnected with another solar cell via an interconnect structure that includes a second portion of the conductive foil, with the interconnect structure having a second yield strength greater than the first yield strength.
    Type: Grant
    Filed: September 25, 2014
    Date of Patent: January 31, 2017
    Assignee: SunPower Corporation
    Inventors: Thomas P. Pass, Gabriel Harley, David Kavulak, Richard Hamilton Sewell
  • Patent number: 9536632
    Abstract: A solar cell can include a substrate and a semiconductor region disposed in or above the substrate. The solar cell can also include a conductive contact disposed on the semiconductor region with the conductive contact including deformed conductive particles.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: January 3, 2017
    Assignee: SunPower Corporation
    Inventor: Richard Hamilton Sewell
  • Publication number: 20160380132
    Abstract: Approaches for fabricating one-dimensional metallization for solar cells, and the resulting solar cells, are described. In an example, a solar cell includes a substrate having a back surface and an opposing light-receiving surface. A plurality of alternating N-type and P-type semiconductor regions is disposed in or above the back surface of the substrate and parallel along a first direction to form a one-dimensional layout of emitter regions for the solar cell. A conductive contact structure is disposed on the plurality of alternating N-type and P-type semiconductor regions. The conductive contact structure includes a plurality of metal lines corresponding to the plurality of alternating N-type and P-type semiconductor regions. The plurality of metal lines is parallel along the first direction to form a one-dimensional layout of a metallization layer for the solar cell.
    Type: Application
    Filed: June 25, 2015
    Publication date: December 29, 2016
    Inventors: Richard Hamilton Sewell, David Fredric Joel Kavulak, Lewis Abra, Thomas P. Pass, Taeseok Kim, Matthieu Moors, Benjamin Ian Hsia, Gabriel Harley
  • Publication number: 20160380127
    Abstract: Approaches for fabricating foil-based metallization of solar cells based on a leave-in etch mask, and the resulting solar cells, are described. In an example, a solar cell includes a substrate having a back surface and an opposing light-receiving surface. A plurality of alternating N-type and P-type semiconductor regions is disposed in or above the back surface of the substrate. A conductive contact structure is disposed on the plurality of alternating N-type and P-type semiconductor regions. The conductive contact structure includes metal foil portions in alignment with corresponding ones of the alternating N-type and P-type semiconductor regions. A patterned wet etchant-resistant polymer layer is disposed on the conductive contact structure. Portions of the patterned wet etchant-resistant polymer layer are disposed on and in alignment with the metal foil portions.
    Type: Application
    Filed: June 26, 2015
    Publication date: December 29, 2016
    Inventors: Richard Hamilton Sewell, David Fredric Joel Kavulak, Taeseok Kim, Gabriel Harley
  • Publication number: 20160380128
    Abstract: Thermal compression bonding approaches for foil-based metallization of solar cells, and the resulting solar cells, are described. For example, a method of fabricating a solar cell includes placing a metal foil over a metalized surface of a wafer of the solar cell. The method also includes locating the metal foil with the metalized surface of the wafer. The method also includes, subsequent to the locating, applying a force to the metal foil such that a shear force appears between the metal foil and the metallized surface of the wafer to electrically connect a substantial portion of the metal foil with the metalized surface of the wafer.
    Type: Application
    Filed: June 26, 2015
    Publication date: December 29, 2016
    Inventor: Richard Hamilton Sewell
  • Publication number: 20160380134
    Abstract: Approaches for fabricating wire-based metallization for solar cells, and the resulting solar cells, are described. In an example, a solar cell includes a substrate having a back surface and an opposing light-receiving surface. A plurality of alternating N-type and P-type semiconductor regions is disposed in or above the back surface of the substrate. A conductive contact structure is disposed on the plurality of alternating N-type and P-type semiconductor regions. The conductive contact structure includes a plurality of metal wires. Each metal wire of the plurality of metal wires is parallel along a first direction to form a one-dimensional layout of a metallization layer for the solar cell.
    Type: Application
    Filed: June 26, 2015
    Publication date: December 29, 2016
    Inventors: Richard Hamilton Sewell, Robert Woehl, Jens Dirk Moschner, Nils-Peter Harder
  • Publication number: 20160375665
    Abstract: A thermo-compression bonding tool with a high temperature elastic element, and methods of bonding a metal sheet to a substrate using a thermo-compression bonding tool are described. In an example, a system for bonding a metal sheet to a substrate includes a stage to support the substrate and an elastic roller located above the stage. The elastic roller includes a high temperature material. The system also includes a heated backing plate located above the elastic roller. The backing plate is configured to apply pressure and heat to the elastic roller as the elastic roller rolls across a metal sheet disposed above the substrate.
    Type: Application
    Filed: June 26, 2015
    Publication date: December 29, 2016
    Inventors: Richard Hamilton Sewell, Thomas Pass