Patents by Inventor Richard Holscher

Richard Holscher has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9240427
    Abstract: An electronic imager includes a pixel sensor array, a plurality elements of a color filter array containing pigments forming multiple color filter patterns on the pixel sensor array and a silylating agent formed between at least first and second elements of the multiple color filter patterns. A method for forming a color filter array on a pixel sensor array of an electronic imager includes forming a pixel sensor array on a substrate, forming a first color filter pattern on the pixel sensor array, depositing a silylating agent on the first color filter pattern, disposing elements of a second color filter pattern on the silylating agent between respective elements of the first color filter pattern and disposing elements of a third color filter pattern on the silylating agent between respective elements of the first color filter pattern.
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: January 19, 2016
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Brian Vaartstra, Richard Holscher
  • Patent number: 9172892
    Abstract: An image sensor may have an array of image sensor pixels having varying light collecting areas. The light collecting area of each image pixel may vary with respect to other image pixels due to varied microlens sizes and varied color filter element sizes throughout the array. The light collecting area may vary within unit pixel cells and the variability of the light collecting areas of pixels within each pixel cell may depend on the location of the pixel cell in the pixel array. Each unit pixel cell may include at least one clear pixel having a light collecting area that is smaller than the light collecting areas of other single color pixels in the unit pixel cell.
    Type: Grant
    Filed: July 26, 2013
    Date of Patent: October 27, 2015
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Alexandre G. Dokoutchaev, Richard Holscher, Jeffrey Mackey, Gershon Rosenblum, Gennadiy Agranov
  • Patent number: 8878969
    Abstract: An image sensor may be provided in which a pixel array includes imaging pixels and application-specific pixels. The application-specific pixels may include depth-sensing pixels, infrared imaging pixels, or other types of application-specific pixels. A color filter array may be formed over the pixel array. The color filter array may include Bayer color filter array formed over the imaging pixels. The color filter array may also include a plurality of green color filter elements formed over the application-specific pixels. Barrier structures may be interposed between imaging pixels and application-specific pixels. The barrier structures may be configured to reduce or eliminate optical crosstalk between imaging pixels and adjacent application-specific pixels. The barrier structures may include an opaque photodefinable material such as black or blue photodefinable material that may be configured to filter out wavelength bands of interest.
    Type: Grant
    Filed: July 16, 2012
    Date of Patent: November 4, 2014
    Assignee: Aptina Imaging Corporation
    Inventors: Richard Holscher, Gennadiy Agranov, Dongqing Cao
  • Publication number: 20140078366
    Abstract: An image sensor may have an array of image sensor pixels having varying light collecting areas. The light collecting area of each image pixel may vary with respect to other image pixels due to varied microlens sizes and varied color filter element sizes throughout the array. The light collecting area may vary within unit pixel cells and the variability of the light collecting areas of pixels within each pixel cell may depend on the location of the pixel cell in the pixel array. Each unit pixel cell may include at least one clear pixel having a light collecting area that is smaller than the light collecting areas of other single color pixels in the unit pixel cell.
    Type: Application
    Filed: July 26, 2013
    Publication date: March 20, 2014
    Applicant: Aptina Imaging Corporation
    Inventors: Alexandre G. Dokoutchaev, Richard Holscher, Jeffrey Mackey, Gershon Rosenblum, Gennadiy Agranov
  • Publication number: 20130027577
    Abstract: An image sensor may be provided in which a pixel array includes imaging pixels and application-specific pixels. The application-specific pixels may include depth-sensing pixels, infrared imaging pixels, or other types of application-specific pixels. A color filter array may be formed over the pixel array. The color filter array may include Bayer color filter array formed over the imaging pixels. The color filter array may also include a plurality of green color filter elements formed over the application-specific pixels. Barrier structures may be interposed between imaging pixels and application-specific pixels. The barrier structures may be configured to reduce or eliminate optical crosstalk between imaging pixels and adjacent application-specific pixels. The barrier structures may include an opaque photodefinable material such as black or blue photodefinable material that may be configured to filter out wavelength bands of interest.
    Type: Application
    Filed: July 16, 2012
    Publication date: January 31, 2013
    Inventors: Richard Holscher, Gennadly Agranov, Dongqing Cao
  • Publication number: 20120273905
    Abstract: An electronic imager includes a pixel sensor array, a plurality elements of a color filter array containing pigments forming multiple color filter patterns on the pixel sensor array and a silylating agent formed between at least first and second elements of the multiple color filter patterns. A method for forming a color filter array on a pixel sensor array of an electronic imager includes forming a pixel sensor array on a substrate, forming a first color filter pattern on the pixel sensor array, depositing a silylating agent on the first color filter pattern, disposing elements of a second color filter pattern on the silylating agent between respective elements of the first color filter pattern and disposing elements of a third color filter pattern on the silylating agent between respective elements of the first color filter pattern.
    Type: Application
    Filed: September 1, 2011
    Publication date: November 1, 2012
    Applicant: Aptina Imaging Corporation
    Inventors: Brian Vaartstra, Richard Holscher
  • Patent number: 7825443
    Abstract: In one aspect, the invention includes a semiconductor processing method. An antireflective material layer is formed over a substrate. At least a portion of the antireflective material layer is annealed at a temperature of greater than about 400° C. A layer of photoresist is formed over the annealed antireflective material layer. The layer of photoresist is patterned. A portion of the antireflective material layer unmasked by the patterned layer of photoresist is removed. In another aspect, the invention includes the following semiconductor processing. An antireflective material layer is formed over a substrate. The antireflective material layer is annealed at a temperature of greater than about 400° C. A layer of photoresist is formed over the annealed antireflective material layer. Portions of the layer of photoresist are exposed to radiation waves. Some of the radiation waves are absorbed by the antireflective material during the exposing.
    Type: Grant
    Filed: August 29, 2005
    Date of Patent: November 2, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Richard Holscher, Zhiping Yin, Tom Glass
  • Patent number: 7804115
    Abstract: In one aspect, the invention includes a semiconductor processing method. An antireflective material layer is formed over a substrate. At least a portion of the antireflective material layer is annealed at a temperature of greater than about 400° C. A layer of photoresist is formed over the annealed antireflective material layer. The layer of photoresist is patterned. A portion of the antireflective material layer unmasked by the patterned layer of photoresist is removed. In another aspect, the invention includes the following semiconductor processing. An antireflective material layer is formed over a substrate. The antireflective material layer is annealed at a temperature of greater than about 400° C. A layer of photoresist is formed over the annealed antireflective material layer. Portions of the layer of photoresist are exposed to radiation waves. Some of the radiation waves are absorbed by the antireflective material during the exposing.
    Type: Grant
    Filed: July 7, 2006
    Date of Patent: September 28, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Richard Holscher, Zhiping Yin, Tom Glass
  • Publication number: 20090294878
    Abstract: The present invention includes semiconductor circuitry. Such circuitry encompasses a metal silicide layer over a substrate and a layer comprising silicon, nitrogen and oxygen in physical contact with the metal silicide layer. The present invention also includes a gate stack which encompasses a polysilicon layer over a substrate, a metal silicide layer over the polysilicon layer, an antireflective material layer over the metal silicide layer, a silicon nitride layer over the antireflective material layer, and a layer of photoresist over the silicon nitride layer, for photolithographically patterning the layer of photoresist to form a patterned masking layer from the layer of photoresist and transferring a pattern from the patterned masking layer to the silicon nitride layer, antireflective material layer, metal silicide layer and polysilicon layer. The patterned silicon nitride layer, antireflective material layer, metal silicide layer and polysilicon layer encompass a gate stack.
    Type: Application
    Filed: August 7, 2009
    Publication date: December 3, 2009
    Inventors: Zhiping Yin, Ravi Iyer, Thomas R. Glass, Richard Holscher, Ardavan Niroomand, Linda K. Somerville, Gurtej S. Sandhu
  • Patent number: 7626238
    Abstract: In one aspect, the invention includes a semiconductor processing method. An antireflective material layer is formed over a substrate. At least a portion of the antireflective material layer is annealed at a temperature of greater than about 400° C. A layer of photoresist is formed over the annealed antireflective material layer. The layer of photoresist is patterned. A portion of the antireflective material layer unmasked by the patterned layer of photoresist is removed. In another aspect, the invention includes the following semiconductor processing. An antireflective material layer is formed over a substrate. The antireflective material layer is annealed at a temperature of greater than about 400° C. A layer of photoresist is formed over the annealed antireflective material layer. Portions of the layer of photoresist are exposed to radiation waves. Some of the radiation waves are absorbed by the antireflective material during the exposing.
    Type: Grant
    Filed: August 31, 2005
    Date of Patent: December 1, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Richard Holscher, Zhiping Yin, Tom Glass
  • Patent number: 7576400
    Abstract: The present invention includes semiconductor circuitry. Such circuitry encompasses a metal silicide layer over a substrate and a layer comprising silicon, nitrogen and oxygen in physical contact with the metal silicide layer. The present invention also includes a gate stack which encompasses a polysilicon layer over a substrate, a metal silicide layer over the polysilicon layer, an antireflective material layer over the metal silicide layer, a silicon nitride layer over the antireflective material layer, and a layer of photoresist over the silicon nitride layer, for photolithographically patterning the layer of photoresist to form a patterned masking layer from the layer of photoresist and transferring a pattern from the patterned masking layer to the silicon nitride layer, antireflective material layer, metal silicide layer and polysilicon layer. The patterned silicon nitride layer, antireflective material layer, metal silicide layer and polysilicon layer encompass a gate stack.
    Type: Grant
    Filed: April 26, 2000
    Date of Patent: August 18, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Zhiping Yin, Ravi Iyer, Thomas R. Glass, Richard Holscher, Ardavan Niroomand, Linda K. Somerville, Gurtej S. Sandhu
  • Publication number: 20070238034
    Abstract: A method and apparatus are disclosed which provide a color filter array for an imaging device in which the filters of the array are accurately positioned through the use of a patterned mask layer used to form filters for one color of the array. Additionally or alternatively, the color filter array can have a light blocking spacer to block light from being transmitted between color filters and/or to a peripheral circuitry region.
    Type: Application
    Filed: April 7, 2006
    Publication date: October 11, 2007
    Inventor: Richard Holscher
  • Publication number: 20070238207
    Abstract: In one aspect, the invention includes a semiconductor processing method. An antireflective material layer is formed over a substrate. At least a portion of the antireflective material layer is annealed at a temperature of greater than about 400° C. A layer of photoresist is formed over the annealed antireflective material layer. The layer of photoresist is patterned. A portion of the antireflective material layer unmasked by the patterned layer of photoresist is removed. In another aspect, the invention includes the following semiconductor processing. An antireflective material layer is formed over a substrate. The antireflective material layer is annealed at a temperature of greater than about 400° C. A layer of photoresist is formed over the annealed antireflective material layer. Portions of the layer of photoresist are exposed to radiation waves. Some of the radiation waves are absorbed by the antireflective material during the exposing.
    Type: Application
    Filed: September 6, 2005
    Publication date: October 11, 2007
    Inventors: Richard Holscher, Zhiping Yin, Tom Glass
  • Publication number: 20070238035
    Abstract: An apparatus and method to provide an imager having an array of color filter elements, each color filter element being separated from each other by spacers. The spacers can optically isolate filter elements from each other.
    Type: Application
    Filed: April 7, 2006
    Publication date: October 11, 2007
    Inventors: Richard Holscher, Ulrich Boettiger
  • Publication number: 20060269699
    Abstract: In one aspect, the invention includes a semiconductor processing method. An antireflective material layer is formed over a substrate. At least a portion of the antireflective material layer is annealed at a temperature of greater than about 400° C. A layer of photoresist is formed over the annealed antireflective material layer. The layer of photoresist is patterned. A portion of the antireflective material layer unmasked by the patterned layer of photoresist is removed. In another aspect, the invention includes the following semiconductor processing. An antireflective material layer is formed over a substrate. The antireflective material layer is annealed at a temperature of greater than about 400° C. A layer of photoresist is formed over the annealed antireflective material layer. Portions of the layer of photoresist are exposed to radiation waves. Some of the radiation waves are absorbed by the antireflective material during the exposing.
    Type: Application
    Filed: July 7, 2006
    Publication date: November 30, 2006
    Inventors: Richard Holscher, Zhiping Yin, Tom Glass
  • Publication number: 20060220186
    Abstract: In one aspect, the invention includes a semiconductor processing method. An antireflective material layer is formed over a substrate. At least a portion of the antireflective material layer is annealed at a temperature of greater than about 400° C. A layer of photoresist is formed over the annealed antireflective material layer. The layer of photoresist is patterned. A portion of the antireflective material layer unmasked by the patterned layer of photoresist is removed. In another aspect, the invention includes the following semiconductor processing. An antireflective material layer is formed over a substrate. The antireflective material layer is annealed at a temperature of greater than about 400° C. A layer of photoresist is formed over the annealed antireflective material layer. Portions of the layer of photoresist are exposed to radiation waves. Some of the radiation waves are absorbed by the antireflective material during the exposing.
    Type: Application
    Filed: August 29, 2005
    Publication date: October 5, 2006
    Inventors: Richard Holscher, Zhiping Yin, Tom Glass
  • Publication number: 20060038262
    Abstract: In one aspect, the invention includes a semiconductor processing method. An antireflective material layer is formed over a substrate. At least a portion of the antireflective material layer is annealed at a temperature of greater than about 400° C. A layer of photoresist is formed over the annealed antireflective material layer. The layer of photoresist is patterned. A portion of the antireflective material layer unmasked by the patterned layer of photoresist is removed. In another aspect, the invention includes the following semiconductor processing. An antireflective material layer is formed over a substrate. The antireflective material layer is annealed at a temperature of greater than about 400° C. A layer of photoresist is formed over the annealed antireflective material layer. Portions of the layer of photoresist are exposed to radiation waves. Some of the radiation waves are absorbed by the antireflective material during the exposing.
    Type: Application
    Filed: August 31, 2005
    Publication date: February 23, 2006
    Inventors: Richard Holscher, Zhiping Yin, Tom Glass
  • Publication number: 20060009042
    Abstract: A patterned mask can be formed as follows. A first patterned photoresist is formed over a masking layer and utilized during a first etch into the masking layer. The first etch extends to a depth in the masking layer that is less than entirely through the masking layer. A second patterned photoresist is subsequently formed over the masking layer and utilized during a second etch into the masking layer. The combined first and second etches form openings extending entirely through the masking layer and thus form the masking layer into the patterned mask. The patterned mask can be utilized to form a pattern in a substrate underlying the mask. The pattern formed in the substrate can correspond to an array of capacitor container openings. Capacitor structure can be formed within the openings. The capacitor structures can be incorporated within a DRAM array.
    Type: Application
    Filed: August 31, 2005
    Publication date: January 12, 2006
    Inventors: Brett Busch, Luan Tran, Ardavan Niroomand, Fred Fishburn, Yoshiki Hishiro, Ulrich Boettiger, Richard Holscher
  • Publication number: 20050269620
    Abstract: A patterned mask can be formed as follows. A first patterned photoresist is formed over a masking layer and utilized during a first etch into the masking layer. The first etch extends to a depth in the masking layer that is less than entirely through the masking layer. A second patterned photoresist is subsequently formed over the masking layer and utilized during a second etch into the masking layer. The combined first and second etches form openings extending entirely through the masking layer and thus form the masking layer into the patterned mask. The patterned mask can be utilized to form a pattern in a substrate underlying the mask. The pattern formed in the substrate can correspond to an array of capacitor container openings. Capacitor structure can be formed within the openings. The capacitor structures can be incorporated within a DRAM array.
    Type: Application
    Filed: July 22, 2005
    Publication date: December 8, 2005
    Inventors: Brett Busch, Luan Tran, Ardavan Niroomand, Fred Fishburn, Richard Holscher
  • Publication number: 20050186802
    Abstract: A patterned mask can be formed as follows. A first patterned photoresist is formed over a masking layer and utilized during a first etch into the masking layer. The first etch extends to a depth in the masking layer that is less than entirely through the masking layer. A second patterned photoresist is subsequently formed over the masking layer and utilized during a second etch into the masking layer. The combined first and second etches form openings extending entirely through the masking layer and thus form the masking layer into the patterned mask. The patterned mask can be utilized to form a pattern in a substrate underlying the mask. The pattern formed in the substrate can correspond to an array of capacitor container openings. Capacitor structure can be formed within the openings. The capacitor structures can be incorporated within a DRAM array.
    Type: Application
    Filed: February 20, 2004
    Publication date: August 25, 2005
    Inventors: Brett Busch, Luan Tran, Ardavan Niroomand, Fred Fishburn, Yoshiki Hishiro, Ulrich Boettiger, Richard Holscher