Patents by Inventor Richard Holscher

Richard Holscher has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6878507
    Abstract: In one aspect, the invention includes a semiconductor processing method. An antireflective material layer is formed over a substrate. At least a portion of the antireflective material layer is annealed at a temperature of greater than about 400° C. A layer of photoresist is formed over the annealed antireflective material layer. The layer of photoresist is patterned. A portion of the antireflective material layer unmasked by the patterned layer of photoresist is removed. In another aspect, the invention includes the following semiconductor processing. An antireflective material layer is formed over a substrate. The antireflective material layer is annealed at a temperature of greater than about 400° C. A layer of photoresist is formed over the annealed antireflective material layer. Portions of the layer of photoresist are exposed to radiation waves. Some of the radiation waves are absorbed by the antireflective material during the exposing.
    Type: Grant
    Filed: June 19, 2001
    Date of Patent: April 12, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Richard Holscher, Zhiping Yin, Tom Glass
  • Publication number: 20050020055
    Abstract: In one aspect, the invention includes a semiconductor processing method. An antireflective material layer is formed over a substrate. At least a portion of the antireflective material layer is annealed at a temperature of greater than about 400° C. A layer of photoresist is formed over the annealed antireflective material layer. The layer of photoresist is patterned. A portion of the antireflective material layer unmasked by the patterned layer of photoresist is removed. In another aspect, the invention includes the following semiconductor processing. An antireflective material layer is formed over a substrate. The antireflective material layer is annealed at a temperature of greater than about 400° C. A layer of photoresist is formed over the annealed antireflective material layer. Portions of the layer of photoresist are exposed to radiation waves. Some of the radiation waves are absorbed by the antireflective material during the exposing.
    Type: Application
    Filed: August 13, 2004
    Publication date: January 27, 2005
    Inventors: Richard Holscher, Zhiping Yin, Tom Glass
  • Publication number: 20030054294
    Abstract: In one aspect, the invention includes a semiconductor processing method. An antireflective material layer is formed over a substrate. At least a portion of the antireflective material layer is annealed at a temperature of greater than about 400° C. A layer of photoresist is formed over the annealed antireflective material layer. The layer of photoresist is patterned. A portion of the antireflective material layer unmasked by the patterned layer of photoresist is removed. In another aspect, the invention includes the following semiconductor processing. An antireflective material layer is formed over a substrate. The antireflective material layer is annealed at a temperature of greater than about 400° C. A layer of photoresist is formed over the annealed antireflective material layer. Portions of the layer of photoresist are exposed to radiation waves. Some of the radiation waves are absorbed by the antireflective material during the exposing.
    Type: Application
    Filed: October 21, 2002
    Publication date: March 20, 2003
    Inventors: Richard Holscher, Zhiping Yin, Tom Glass
  • Patent number: 6461950
    Abstract: In one aspect, the invention includes a semiconductor processing method comprising a) forming a metal silicide layer over a substrate; b) depositing a layer comprising silicon, nitrogen and oxygen over the metal silicide layer; and c) while the layer comprising silicon, nitrogen and oxygen is over the metal silicide layer, annealing the metal silicide layer.
    Type: Grant
    Filed: May 30, 2001
    Date of Patent: October 8, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Zhiping Yin, Ravi Iyer, Thomas R. Glass, Richard Holscher, Ardavan Niroomand, Linda K. Somerville, Gurtej S. Sandhu
  • Patent number: 6444588
    Abstract: A method of forming an anti-reflective coating material layer in the fabrication of integrated circuits includes providing a substrate assembly having a surface and providing an inorganic anti-reflective coating material layer on the substrate assembly surface. The inorganic anti-reflective coating material layer has an associated first etch rate when exposed to an etchant. The method further includes thermally treating the inorganic anti-reflective coating material layer formed thereon such that the thermally treated anti-reflective coating material layer then has an associated second etch rate less than the first etch rate when exposed to the etchant, e.g., the second etch rate is less than 16 Å/minute, the second etch rate is less than 20% of the first etch rate, etc.
    Type: Grant
    Filed: April 26, 1999
    Date of Patent: September 3, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Richard Holscher, Zhiping Yin
  • Publication number: 20010033997
    Abstract: In one aspect, the invention includes a semiconductor processing method. An antireflective material layer is formed over a substrate. At least a portion of the antireflective material layer is annealed at a temperature of greater than about 400° C. A layer of photoresist is formed over the annealed antireflective material layer. The layer of photoresist is patterned. A portion of the antireflective material layer unmasked by the patterned layer of photoresist is removed. In another aspect, the invention includes the following semiconductor processing. An antireflective material layer is formed over a substrate. The antireflective material layer is annealed at a temperature of greater than about 400° C. A layer of photoresist is formed over the annealed antireflective material layer. Portions of the layer of photoresist are exposed to radiation waves. Some of the radiation waves are absorbed by the antireflective material during the exposing.
    Type: Application
    Filed: June 19, 2001
    Publication date: October 25, 2001
    Inventors: Richard Holscher, Zhiping Yin, Tom Glass
  • Publication number: 20010028095
    Abstract: In one aspect, the invention includes a semiconductor processing method comprising a) forming a metal silicide layer over a substrate; b) depositing a layer comprising silicon, nitrogen and oxygen over the metal silicide layer; and c) while the layer comprising silicon, nitrogen and oxygen is over the metal silicide layer, annealing the metal silicide layer.
    Type: Application
    Filed: May 30, 2001
    Publication date: October 11, 2001
    Inventors: Zhiping Yin, Ravi Iyer, Thomas R. Glass, Richard Holscher, Ardavan Niroomand, Linda K. Somerville, Gurtej S. Sandhu
  • Patent number: 6281100
    Abstract: In one aspect, the invention includes a semiconductor processing method comprising a) forming a metal silicide layer over a substrate; b) depositing a layer comprising silicon, nitrogen and oxygen over the metal silicide layer; and c) while the layer comprising silicon, nitrogen and oxygen is over the metal silicide layer, annealing the metal silicide layer.
    Type: Grant
    Filed: September 3, 1998
    Date of Patent: August 28, 2001
    Assignee: Micron Technology, Inc.
    Inventors: Zhiping Yin, Ravi Iyer, Thomas R. Glass, Richard Holscher, Ardavan Niroomand, Linda K. Somerville, Gurtej S. Sandhu
  • Patent number: 6274292
    Abstract: In one aspect, the invention includes a semiconductor processing method. An antireflective material layer is formed over a substrate. At least a portion of the antireflective material layer is annealed at a temperature of greater than about 400° C. A layer of photoresist is formed over the annealed antireflective material layer. The layer of photoresist is patterned. A portion of the antireflective material layer unmasked by the patterned layer of photoresist is removed. In another aspect, the invention includes the following semiconductor processing. An antireflective material layer is formed over a substrate. The antireflective material layer is annealed at a temperature of greater than about 400° C. A layer of photoresist is formed over the annealed antireflective material layer. Portions of the layer of photoresist are exposed to radiation waves. Some of the radiation waves are absorbed by the antireflective material during the exposing.
    Type: Grant
    Filed: February 25, 1998
    Date of Patent: August 14, 2001
    Assignee: Micron Technology, Inc.
    Inventors: Richard Holscher, Zhiping Yin, Tom Glass
  • Patent number: 4942837
    Abstract: An icebreaker hull having laterally projecting hull components which define inclined upwardly and rearwardly sloped faces arranged in part above and in part below the vessels normal water line, and each hull component further including a longitudinally extending face cooperating with the inclined face to define a cutting edge. At least a second pair of similar projecting hull components adjacent the first components to define a second cutting edge downstream of the first cutting edge. One or more of these hull components may be movable from and to positions where they are stowed in streamline relationship to the hull.
    Type: Grant
    Filed: January 26, 1989
    Date of Patent: July 24, 1990
    Assignee: Thyssen Nordseewerke GmbH
    Inventors: Jens-Holger Hellmann, Richard Holscher, Hermann J. Janssen, Alfred Kleemann, Karl-Heinz Rupp, Joachim Schwarz, Gunter Varges, Heinrich Waas