Patents by Inventor Richard J Carter

Richard J Carter has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10795606
    Abstract: Example implementations relate to buffer-based update of state data. In example embodiments, a computing device may obtain current state data from a first buffer and determine next state data based at least on the current state data. The computing device may also obtain last difference data that corresponds, for example to current state data that is different from previous state data. The last difference data may be obtained, for example, using a difference data identifier. The computing device may store the last difference data in the second memory buffer. The computing device may also store in the second memory buffer new difference data corresponding to differences between the next state data and the current state data. The computing device may also update the difference data identifier based on the new difference data.
    Type: Grant
    Filed: August 9, 2018
    Date of Patent: October 6, 2020
    Assignee: Hewlett Packard Enterprise Development LP
    Inventor: Richard J. Carter
  • Publication number: 20180349058
    Abstract: Example implementations relate to buffer-based update of state data. In example embodiments, a computing device may obtain current state data from a first buffer and determine next state data based at least on the current state data. The computing device may also obtain last difference data that corresponds, for example to current state data that is different from previous state data. The last difference data may be obtained, for example, using a difference data identifier. The computing device may store the last difference data in the second memory buffer. The computing device may also store in the second memory buffer new difference data corresponding to differences between the next state data and the current state data. The computing device may also update the difference data identifier based on the new difference data.
    Type: Application
    Filed: August 9, 2018
    Publication date: December 6, 2018
    Inventor: Richard J. Carter
  • Patent number: 10067715
    Abstract: Example implementations relate to buffer-based update of state data. In example embodiments, a computing device may obtain current state data from a first buffer and determine next state data based at least on the current state data. The computing device may also obtain last difference data that corresponds, for example to current state data that is different from previous state data. The last difference data may be obtained, for example, using a difference data identifier. The computing device may store the last difference data in the second memory buffer. The computing device may also store in the second memory buffer new difference data corresponding to differences between the next state data and the current state data. The computing device may also update the difference data identifier based on the new difference data.
    Type: Grant
    Filed: June 27, 2014
    Date of Patent: September 4, 2018
    Assignee: Hewlett Packard Enterprise Development LP
    Inventor: Richard J. Carter
  • Publication number: 20170097792
    Abstract: Example implementations relate to buffer-based update of state data. In example embodiments, a computing device may obtain current state data from a first buffer and determine next state data based at least on the current state data. The computing device may also obtain last difference data that corresponds, for example to current state data that is different from previous state data. The last difference data may be obtained, for example, using a difference data identifier. The computing device may store the last difference data in the second memory buffer. The computing device may also store in the second memory buffer new difference data corresponding to differences between the next state data and the current state data. The computing device may also update the difference data identifier based on the new difference data.
    Type: Application
    Filed: June 27, 2014
    Publication date: April 6, 2017
    Inventor: Richard J. Carter
  • Patent number: 9576952
    Abstract: Integrated circuits and fabrication methods are provided. The integrated circuit includes: a varying gate structure disposed over a substrate structure, the varying gate structure including a first gate stack in a first region of the substrate structure, and a second gate stack in a second region of the substrate structure; a first field-effect transistor in the first region, the first field-effect transistor including the first gate stack and having a first threshold voltage; and a second field-effect transistor in the second region, the second field-effect transistor including the second gate stack and having a second threshold voltage, where the first threshold voltage is different from the second threshold voltage. The methods include providing the varying gate structure, the providing including: sizing layer(s) of the varying gate structure with different thickness(es) in different region(s).
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: February 21, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Manoj Joshi, Manfred Eller, Richard J. Carter, Srikanth Balaji Samavedam
  • Patent number: 9570586
    Abstract: Circuit fabrication methods are provided which include, for example: providing one or more gate structures disposed over a substrate structure, the substrate structure including a first region and a second region; forming a plurality of U-shaped cavities extending into the substrate structure in the first region and the second region thereof, where at least one first cavity of the plurality of U-shaped cavities is disposed adjacent in one gate structure in the first region; and expanding the at least one first cavity further into the substrate structure to at least partially undercut the one gate structure, without expanding at least one second cavity of the plurality of U-shaped cavities, where forming the plurality of U-shaped cavities facilitates fabricating the circuit structure. In one embodiment, the circuit structure includes first and second transistors, having different device architectures, the first transistor having a higher mobility characteristic than the second transistor.
    Type: Grant
    Filed: November 20, 2013
    Date of Patent: February 14, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Hong Yu, Seong Yeol Mun, Bingwu Liu, Lun Zhao, Richard J. Carter, Manfred Eller
  • Patent number: 9508850
    Abstract: Approaches for enabling uniform epitaxial (epi) growth in an epi junction area of a semiconductor device (e.g., a fin field effect transistor device) are provided. Specifically, a semiconductor device is provided including a dummy gate and a set of fin field effect transistors (FinFETs) formed over a substrate; a spacer layer formed over the dummy gate and each of the set of FinFETs; and an epi material formed within a set of recesses in the substrate, the set of recesses formed prior to removal of an epi block layer over the dummy gate.
    Type: Grant
    Filed: February 1, 2016
    Date of Patent: November 29, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Zhenyu Hu, Richard J. Carter, Andy Wei, Qi Zhang, Sruthi Muralidharan, Amy L. Child
  • Patent number: 9455201
    Abstract: In one aspect there is set forth herein a semiconductor device having a first field effect transistor formed in a substrate structure, and a second field effect transistor formed in the substrate structure. The first field effect transistor can include a first substrate structure doping, a first gate stack, and a first threshold voltage. The second field effect transistor can include the first substrate structure doping, a second gate stack different from the first gate stack, and a second threshold voltage different from the first threshold voltage.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: September 27, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Manoj Joshi, Manfred Eller, Rohit Pal, Richard J. Carter, Srikanth Balaji Samavedam, Bongki Lee, Jin Ping Liu
  • Patent number: 9455198
    Abstract: One illustrative method disclosed herein includes, among other things, removing at least one, but not all, of a plurality of first features in a first patterned mask layer so as to define a modified first patterned masking layer, wherein removed first feature(s) correspond to a location where a final isolation structure will be formed, performing an etching process though the modified first patterned masking layer to form an initial isolation trench in the substrate, and performing another etching process through the modified first patterned mask layer to thereby define a plurality of fin-formation trenches in the substrate and to extend a depth of the initial isolation trench so as to define a final isolation trench for the final isolation structure.
    Type: Grant
    Filed: April 1, 2015
    Date of Patent: September 27, 2016
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Hong Yu, HongLiang Shen, Zhenyu Hu, Lun Zhao, Richard J. Carter, Xusheng Wu
  • Publication number: 20160211373
    Abstract: Embodiments of the present invention provide improved methods for fabricating field effect transistors such as finFETs. Stressor regions are used to increase carrier mobility. However, subsequent processes such as deposition of flowable oxide and annealing can damage the stressor regions, diminishing the amount of stress that is induced. Embodiments of the present invention provide a protective layer of silicon or silicon oxide over the stressor regions prior to the flowable oxide deposition and anneal.
    Type: Application
    Filed: March 24, 2016
    Publication date: July 21, 2016
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: HONG YU, Hyucksoo Yang, Huang Liu, Richard J. Carter
  • Publication number: 20160163862
    Abstract: Approaches for enabling uniform epitaxial (epi) growth in an epi junction area of a semiconductor device (e.g., a fin field effect transistor device) are provided. Specifically, a semiconductor device is provided including a dummy gate and a set of fin field effect transistors (FinFETs) formed over a substrate; a spacer layer formed over the dummy gate and each of the set of FinFETs; and an epi material formed within a set of recesses in the substrate, the set of recesses formed prior to removal of an epi block layer over the dummy gate.
    Type: Application
    Filed: February 1, 2016
    Publication date: June 9, 2016
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: ZHENYU HU, Richard J. Carter, Andy Wei, Qi Zhang, Sruthi Muralidharan, Amy L. Child
  • Patent number: 9362176
    Abstract: The use of two different materials for shallow trench isolation and deep structural trenches with a dielectric material therein (e.g., flowable oxide and a HARP oxide, respectively) causes non-uniform heights of exposed portions of raised semiconductor structures for non-planar semiconductor devices, due to the different etch rates of the materials. Non-uniform openings adjacent the exposed portions of the raised structures from recessing the isolation and dielectric materials are filled with additional dielectric material to create a uniform top layer of one material (the dielectric material), which can then be uniformly recessed to expose uniform portions of the raised structures.
    Type: Grant
    Filed: June 30, 2014
    Date of Patent: June 7, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Hong Yu, HongLiang Shen, Zhao Lun, Zhenyu Hu, Richard J. Carter
  • Patent number: 9362180
    Abstract: In one aspect there is set forth herein an integrated circuit having a first plurality of field effect transistors and a second plurality of field effect transistor, wherein field effect transistors of the first plurality of field effect transistors each have a first gate stack and wherein field effect transistors of the second plurality of field effect transistors each have a second gate stack, the second gate stack being different from the first gate stack by having a metal layer common to the first gate stack and the second gate stack that includes a first thickness at the first gate stack and a second thickness at the second gate stack.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: June 7, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Bongki Lee, Jin Ping Liu, Manoj Joshi, Manfred Eller, Rohit Pal, Richard J. Carter, Srikanth Balaji Samavedam
  • Patent number: 9324841
    Abstract: Embodiments of the present invention provide improved methods for fabricating field effect transistors such as finFETs. Stressor regions are used to increase carrier mobility. However, subsequent processes such as deposition of flowable oxide and annealing can damage the stressor regions, diminishing the amount of stress that is induced. Embodiments of the present invention provide a protective layer of silicon or silicon oxide over the stressor regions prior to the flowable oxide deposition and anneal.
    Type: Grant
    Filed: October 9, 2013
    Date of Patent: April 26, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Hong Yu, Hyucksoo Yang, Huang Liu, Richard J. Carter
  • Publication number: 20160086952
    Abstract: Approaches for forming an oxide cap to protect a semiconductor device (e.g., a fin field effect transistor device (FinFET)) are provided. Specifically, approaches are provided for forming an oxide cap over a subset (e.g., SiP regions) of raised source drain (RSD) structures on the set of fins of the FinFET device to mitigate damage during subsequent processing. The oxide spacer is deposited before the removal of a nitride capping layer from the FinFET device (e.g., by a hot phosphorus wash). The oxide cap on top of the RSD structures will be preserved throughout the removal of the nitride capping layer to provide hardmask protection during this process.
    Type: Application
    Filed: December 7, 2015
    Publication date: March 24, 2016
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: HONG YU, HYUCKSOO YANG, RICHARD J. CARTER
  • Patent number: 9293586
    Abstract: Approaches for enabling uniform epitaxial (epi) growth in an epi junction area of a semiconductor device (e.g., a fin field effect transistor device) are provided. Specifically, a semiconductor device is provided including a dummy gate and a set of fin field effect transistors (FinFETs) formed over a substrate; a spacer layer formed over the dummy gate and each of the set of FinFETs; and an epi material formed within a set of recesses in the substrate, the set of recesses formed prior to removal of an epi block layer over the dummy gate.
    Type: Grant
    Filed: July 17, 2013
    Date of Patent: March 22, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Zhenyu Hu, Richard J. Carter, Andy Wei, Qi Zhang, Sruthi Muralidharan, Amy L. Child
  • Patent number: 9236312
    Abstract: Approaches for forming an oxide cap to protect a semiconductor device (e.g., a fin field effect transistor device (FinFET)) are provided. Specifically, approaches are provided for forming an oxide cap over a subset (e.g., SiP regions) of raised source drain (RSD) structures on the set of fins of the FinFET device to mitigate damage during subsequent processing. The oxide spacer is deposited before the removal of a nitride capping layer from the FinFET device (e.g., by a hot phosphorus wash). The oxide cap on top of the RSD structures will be preserved throughout the removal of the nitride capping layer to provide hardmask protection during this process.
    Type: Grant
    Filed: October 14, 2013
    Date of Patent: January 12, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Hong Yu, Hyucksoo Yang, Richard J. Carter
  • Publication number: 20150380316
    Abstract: The use of two different materials for shallow trench isolation and deep structural trenches with a dielectric material therein (e.g., flowable oxide and a HARP oxide, respectively) causes non-uniform heights of exposed portions of raised semiconductor structures for non-planar semiconductor devices, due to the different etch rates of the materials. Non-uniform openings adjacent the exposed portions of the raised structures from recessing the isolation and dielectric materials are filled with additional dielectric material to create a uniform top layer of one material (the dielectric material), which can then be uniformly recessed to expose uniform portions of the raised structures.
    Type: Application
    Filed: June 30, 2014
    Publication date: December 31, 2015
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Hong YU, HongLiang SHEN, Zhao LUN, Zhenyu HU, Richard J. Carter
  • Patent number: 9219002
    Abstract: Approaches for improving overlay performance for an integrated circuit (IC) device are provided. Specifically, the IC device (e.g., a fin field effect transistor (FinFET)) is provided with an oxide layer and a pad layer formed over a substrate, wherein the oxide layer comprises an alignment and overlay mark, an oxide deposited in a set of openings formed through the pad layer and into the substrate, a mandrel layer deposited over the oxide material and the pad layer, and a set of fins patterned in the IC device without etching the alignment and overlay mark. With this approach, the alignment and overlay mark is provided with the fin cut (FC) layer and, therefore, avoids finification.
    Type: Grant
    Filed: September 17, 2013
    Date of Patent: December 22, 2015
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Zhenyu Hu, Andy Wei, Qi Zhang, Richard J. Carter, Hongliang Shen, Daniel Pham, Sruthi Muralidharan
  • Publication number: 20150287595
    Abstract: Devices and methods for forming semiconductor devices with fins at tight fin pitches are provided. One method includes, for instance: obtaining an intermediate semiconductor device; growing an epi layer over the substrate; forming a doped layer below the epi layer; depositing a first oxide layer on the epi layer; applying a dielectric material on the first oxide layer; and depositing a lithography stack on the dielectric material. One intermediate semiconductor device includes, for instance: a substrate with at least one n-well region and at least one p-well region; a doped layer over the substrate; an epi layer over the doped layer; a first oxide layer over the epi layer; a dielectric layer over the first oxide layer; and a lithography stack over the dielectric layer.
    Type: Application
    Filed: May 29, 2015
    Publication date: October 8, 2015
    Inventors: Andy WEI, Mariappan HARIHARAPUTHIRAN, Dae Geun YANG, Dae-Han CHOI, Xiang HU, Richard J. CARTER, Akshey SEHGAL