Patents by Inventor Richard J. Copland

Richard J. Copland has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170095147
    Abstract: An optical measurement system method for measuring a characteristic of a subject's eye use a probe beam having an infrared wavelength in the infrared spectrum to measure a refraction of the subject's eye at the infrared wavelength; capture at least two different Purkinje images at two different corresponding wavelengths from at least one surface of the lens of the subject's eye; determine from the at least two different Purkinje images a value for at least one parameter of the subject's eye; use the value of the at least one parameter to determine a customized chromatic adjustment factor for the subject's eye; and correct the measured refraction of the subject's eye at the infrared wavelength with the customized chromatic adjustment factor to determine a refraction of the subject's eye at a visible wavelength in the visible spectrum.
    Type: Application
    Filed: September 30, 2016
    Publication date: April 6, 2017
    Inventors: Richard J. Copland, Daniel R. Neal, Thomas D. Raymond, Stephen W. Farrer
  • Patent number: 9603699
    Abstract: Embodiments of this invention generally relate to systems and methods for optical treatment and more particularly to non-invasive refractive treatment method based on sub wavelength particle implantation. In an embodiment, a method for optical treatment identifies an optical aberration of an eye, determines a dopant delivery device configuration in response to the optical aberration of the eye, wherein the determined dopant delivery device is configured to impose a desired correction to the eye to mitigate the identified optical aberration of the eye by applying a doping pattern to the eye so as to locally change a refractive index of the eye.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: March 28, 2017
    Assignee: AMO Wavefront Sciences, LLC
    Inventors: Thomas D. Raymond, Richard J. Copland
  • Publication number: 20170027437
    Abstract: An optical measurement system and apparatus for carrying out cataract diagnostics in an eye of a patient includes a Corneal Topography Subsystem, a wavefront aberrometer subsystem, and an eye structure imaging subsystem, wherein the subsystems have a shared optical axis, and each subsystem is operatively coupled to the others via a controller. The eye structure imaging subsystem is preferably a fourierdomain optical coherence tomographer, and more preferably, a swept source OCT.
    Type: Application
    Filed: December 15, 2015
    Publication date: February 2, 2017
    Inventors: Daniel Neal, Thomas D. Raymond, Richard J. Copland, WEI XIONG, PAUL D. PULASKI, STEPHEN FARRER, CARMEN CANOVAS VIDAL, DANIEL HAMRICK
  • Patent number: 9468369
    Abstract: A system includes a model eye and an optical measurement instrument, which includes: a corneal topography subsystem; a wavefront sensor subsystem; and an eye structure imaging subsystem. The subsystems may have a common fixation axis, and be operatively coupled to each other via a controller. The optical measurement instrument may perform measurements of the model eye to verify correct operation of the optical measurement instrument for measuring one or more characteristics of a subject's eye. The model eye may include an optically transmissive structure having a front curved surface and an opposite rear planar surface, and a material structure provided at the rear planar surface of the optically transmissive structure and having a characteristic to cause a speckle pattern of a portion of a coherent light beam that is directed back out the front curved surface of the optically transmissive structure to have a bright-to-dark ratio of less than 2:1.
    Type: Grant
    Filed: December 3, 2014
    Date of Patent: October 18, 2016
    Assignee: AMO WaveFront Sciences, LLC
    Inventors: Richard J. Copland, Daniel R. Neal, Thomas D. Raymond, Wei Xiong, Paul D. Pulaski, Stephen W. Farrer, Carmen Canovas Vidal, Daniel R. Hamrick
  • Publication number: 20160227997
    Abstract: An optical coherence tomography (OCT) system includes: a light source; a multi-focal delay line; and a light detector. The multi-focal delay line includes: a positive lens; and an optical switch configured to: receive a light from the light source; selectively direct the sample light to the positive lens via a selected one of a plurality of light interfaces each located a different distance from the focal plane of the positive lens; and direct the sample light to an object to be measured. The light detector is configured to receive return light returned from the object to be measured in response to the sample light, and to receive a reference light produced from the light from the light source, and in response thereto to detect at least one interference signal. An associated OCT method may be performed with the OCT system.
    Type: Application
    Filed: December 14, 2015
    Publication date: August 11, 2016
    Inventors: Paul Pulaski, Daniel R. Neal, Thomas D. Raymond, Stephen W. Farrer, Daniel R. Hamrick, Richard J. Copland
  • Publication number: 20160227996
    Abstract: A system for predicting optical power for an intraocular lens based upon measured biometric parameters in a patient's eye includes: a biometric reader capable of measuring at least one biometric parameter and a representation of a corneal topography of the patient's eye; a processor coupled to a computer readable medium having stored thereon a program that upon execution causes the processor to receive the at least one biometric parameter and obtain corneal spherical aberration based upon the representation of the corneal topography, and the processor calculates an optimized optical power to obtain a desired postoperative condition by applying the received value and obtained corneal spherical aberration to a modified regression, wherein the modified regression is of the form: optical power=Regression+constant0*(corneal spherical aberration) or optical power=constant1*(biometric parameter)+constant0*(corneal spherical aberration).
    Type: Application
    Filed: April 13, 2016
    Publication date: August 11, 2016
    Inventors: Daniel R. Neal, Thomas D. Raymond, Richard J. Copland, Wei Xiong, Stephen W. Farrer, Paul D. Pulaski, Daniel R. Hamrick, Carmen Canovas Vidal, Pablo Artal
  • Publication number: 20160150952
    Abstract: Improved devices, systems, and methods for planning cataract surgery on an eye of a patient incorporate results of prior corrective surgeries into a planned cataract surgery of a particular patient by driving an effective surgery vector function based on data from the prior corrective surgeries. The exemplary effective surgery vector employs an influence matrix which may allow improved refractive corrections to be generated so as to increase the overall efficacy of a cataract surgery by specifying one or more parameters of an intraocular lens (IOL) to be implanted during the cataract surgery.
    Type: Application
    Filed: November 23, 2015
    Publication date: June 2, 2016
    Inventors: Thomas D. Raymond, Daniel R. Neal, Richard J. Copland, Wei Xiong, Paul Pulaski, Stephen W. Farrer, Carmen Canovas, Daniel R. Hamrick
  • Publication number: 20160128563
    Abstract: Embodiments of this invention generally relate to systems and methods for wavefront interactive refraction display and more particularly to systems and methods for capturing and displaying eye wavefront interactive refraction data based on the desired refractive state of the patient's eye.
    Type: Application
    Filed: January 14, 2016
    Publication date: May 12, 2016
    Inventors: Daniel R. Neal, Stephen W. Farrer, Larry B. Voss, Thomas D. Raymond, Daniel R. Hamrick, John G. Dixson, Phillip Riera, Ron R. Rammage, Richard J. Copland
  • Publication number: 20160101045
    Abstract: Embodiments of this invention generally relate to systems and methods for optical treatment and more particularly to non-invasive refractive treatment method based on sub wavelength particle implantation. In an embodiment, a method for optical treatment identifies an optical aberration of an eye, determines a dopant delivery device configuration in response to the optical aberration of the eye, wherein the determined dopant delivery device is configured to impose a desired correction to the eye to mitigate the identified optical aberration of the eye by applying a doping pattern to the eye so as to locally change a refractive index of the eye.
    Type: Application
    Filed: December 16, 2015
    Publication date: April 14, 2016
    Inventors: Thomas D. Raymond, Richard J. Copland
  • Publication number: 20160100937
    Abstract: Embodiments of this invention generally relate to systems and methods for optical treatment and more particularly to non-invasive refractive treatment method based on sub wavelength particle implantation. In an embodiment, a method for optical treatment identifies an optical aberration of an eye, determines a dopant delivery device configuration in response to the optical aberration of the eye, wherein the determined dopant delivery device is configured to impose a desired correction to the eye to mitigate the identified optical aberration of the eye by applying a doping pattern to the eye so as to locally change a refractive index of the eye.
    Type: Application
    Filed: December 16, 2015
    Publication date: April 14, 2016
    Inventors: Thomas D. Raymond, Richard J. Copland
  • Publication number: 20160074125
    Abstract: Improved devices, systems, and methods for planning cataract surgery on an eye of a patient incorporate results of prior corrective surgeries into a planned cataract surgery of a particular patient by driving an effective surgery vector function based on data from the prior corrective surgeries. The exemplary effective surgery vector employs an influence matrix which may allow improved refractive corrections to be generated so as to increase the overall efficacy of a cataract surgery by specifying one or more parameters of an intraocular lens (IOL) to be implanted during the cataract surgery.
    Type: Application
    Filed: November 23, 2015
    Publication date: March 17, 2016
    Inventors: Thomas D. Raymond, Daniel R. Neal, Richard J. Copland, Wei Xiong, Paul Pulaski, Stephen W. Farrer, Carmen Canovas, Daniel R. Hamrick
  • Publication number: 20160073868
    Abstract: Improved devices, systems, and methods for planning cataract surgery on an eye of a patient incorporate results of prior corrective surgeries into a planned cataract surgery of a particular patient by driving an effective surgery vector function based on data from the prior corrective surgeries. The exemplary effective surgery vector employs an influence matrix which may allow improved refractive corrections to be generated so as to increase the overall efficacy of a cataract surgery by specifying one or more parameters of an intraocular lens (IOL) to be implanted during the cataract surgery.
    Type: Application
    Filed: November 23, 2015
    Publication date: March 17, 2016
    Inventors: Thomas D. Raymond, Daniel R. Neal, Richard J. Copland, Wei Xiong, Paul Pulaski, Stephen W. Farrer, Carmen Canovas, Daniel R. Hamrick
  • Patent number: 9271646
    Abstract: Embodiments of this invention generally relate to systems and methods for wavefront interactive refraction display and more particularly to systems and methods for capturing and displaying eye wavefront interactive refraction data based on the desired refractive state of the patient's eye.
    Type: Grant
    Filed: March 6, 2014
    Date of Patent: March 1, 2016
    Assignee: AMO WaveFront Sciences, LLC
    Inventors: Daniel Neal, Stephen W. Farrer, Larry B. Voss, Thomas D Raymond, Daniel Hamrick, John Dixson, Phillip Riera, Ron Rammage, Richard J. Copland
  • Patent number: 9241901
    Abstract: Embodiments of this invention generally relate to systems and methods for optical treatment and more particularly to non-invasive refractive treatment method based on sub wavelength particle implantation. In an embodiment, a method for optical treatment identifies an optical aberration of an eye, determines a dopant delivery device configuration in response to the optical aberration of the eye, wherein the determined dopant delivery device is configured to impose a desired correction to the eye to mitigate the identified optical aberration of the eye by applying a doping pattern to the eye so as to locally change a refractive index of the eye.
    Type: Grant
    Filed: March 6, 2014
    Date of Patent: January 26, 2016
    Assignee: AMO Wavefront Sciences, LLC
    Inventors: Thomas D. Raymond, Richard J. Copland
  • Publication number: 20160000318
    Abstract: An optical measurement system and method measure a characteristic of a subject's eye. The optical measurement system receives from an operator, via a user interface of the optical measurement instrument, a begin measurement instruction indicating the start of a measurement period for objectively measuring at least one characteristic of the subject's eye. Subsequent to receiving the begin measurement instruction, the optical measurement system determines whether a criterion associated with the tear film quality of the subject's eye is not satisfied. In response to determining that the criterion is not satisfied, the optical measurement instrument takes one or more corrective actions to measure the characteristic of the subject's eye under a condition wherein the criterion is satisfied.
    Type: Application
    Filed: July 1, 2015
    Publication date: January 7, 2016
    Applicant: AMO WAVEFRONT SCIENCES, LLC
    Inventors: RICHARD J. COPLAND, JOHN G. DIXSON
  • Publication number: 20160000316
    Abstract: A system and method for measuring a characteristic of an eye of a subject receive data pertaining to the subject; assign the subject to an assigned age category based on the data pertaining to the subject; adjust a brightness level of a fixation target according to the assigned age category for the subject; provide the fixation target for a subject to view; and objectively measure at least one characteristic of the eye of the subject while the subject views the fixation target at the adjusted brightness level.
    Type: Application
    Filed: July 2, 2015
    Publication date: January 7, 2016
    Applicant: AMO WAVEFRONT SCIENCES, LLC
    Inventors: RICHARD J. COPLAND, DAVID J. TANZER, THOMAS D. RAYMOND
  • Patent number: 9161688
    Abstract: Embodiments described herein provide improved systems and methods for corneal pachymetry. These systems and methods can be used to improve the accuracy of corneal measurements that are used for a wide variety of different ophthalmic procedures. One embodiment provides a system and method for corneal pachymetry using a plenoptic detector. For example, a corneal pachymetry system can comprise a light source, a plenoptic detector and a processing system coupled to the plenoptic detector. The light source is configured to illuminate the cornea of the eye, and the plenoptic detector is positioned at an angle relative to the eye. The plenoptic detector is configured to receive an image of the light source reflected from the cornea and generate plenoptic image data representing the images. The processing system is coupled to the plenoptic detector and is configured to analyze the plenoptic image data to accurately determine the corneal thickness of the eye.
    Type: Grant
    Filed: March 5, 2014
    Date of Patent: October 20, 2015
    Assignee: AMO Wavefront Sciences, LLC
    Inventors: Thomas D. Raymond, Richard J. Copland
  • Patent number: 9089291
    Abstract: Improved systems and methods for ocular topography and using a plenoptic detector are provided. For example, a multifunction ocular topography and aberrometry system can comprise a first set of light sources, a second light source, a plenoptic detector and a processing system coupled to the plenoptic detector. The first set of light sources and the second light source are configured to selectively illuminate an eye. The plenoptic detector is configured to selectively receive images of the first set of light sources reflected from a corneal surface of the eye and generate first plenoptic image data representing the images of the first set of light sources. The plenoptic detector is further configured receive images of the second light source reflected from a retina of the eye and generate second plenoptic image data representing the images of the second light source.
    Type: Grant
    Filed: March 5, 2014
    Date of Patent: July 28, 2015
    Assignee: AMO WAVEFRONT SCIENCES, LLC
    Inventor: Richard J. Copland
  • Patent number: 9060710
    Abstract: Improved systems and methods for ocular tomography are provided. These systems and methods can be used to improve the effectiveness of a wide variety of different ophthalmic diagnostic procedures, and various surgical and non-surgical treatments. One embodiment provides a system and method for determining ocular tomography data for the eye using a plenoptic detector. For example, an ocular tomography system can comprise a set of light sources configured to illuminate an eye, a plenoptic detector configured to receive images of the light sources reflected from surfaces of the eye and generate plenoptic image data representing the images, and a processing system coupled to the plenoptic detector. The processing system is configured to analyze the plenoptic image data to determine tomography data for the eye.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: June 23, 2015
    Inventor: Richard J. Copland
  • Publication number: 20150131053
    Abstract: A system includes a model eye and an optical measurement instrument, which includes: a corneal topography subsystem; a wavefront sensor subsystem; and an eye structure imaging subsystem. The subsystems may have a common fixation axis, and be operatively coupled to each other via a controller. The optical measurement instrument may perform measurements of the model eye to verify correct operation of the optical measurement instrument for measuring one or more characteristics of a subject's eye. The model eye may include an optically transmissive structure having a front curved surface and an opposite rear planar surface, and a material structure provided at the rear planar surface of the optically transmissive structure and having a characteristic to cause a speckle pattern of a portion of a coherent light beam that is directed back out the front curved surface of the optically transmissive structure to have a bright-to-dark ratio of less than 2:1.
    Type: Application
    Filed: December 3, 2014
    Publication date: May 14, 2015
    Inventors: Richard J. Copland, Daniel R. Neal, Thomas D. Raymond, Wei Xiong, Paul D. Pulaski, Stephen W. Farrer, Carmen Canovas Vidal