Patents by Inventor Richard J. Copland

Richard J. Copland has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140342016
    Abstract: Embodiments of this invention generally relate to systems and methods for optical treatment and more particularly to non-invasive refractive treatment method based on sub wavelength particle implantation. In an embodiment, a method for optical treatment identifies an optical aberration of an eye, determines a dopant delivery device configuration in response to the optical aberration of the eye, wherein the determined dopant delivery device is configured to impose a desired correction to the eye to mitigate the identified optical aberration of the eye by applying a doping pattern to the eye so as to locally change a refractive index of the eye.
    Type: Application
    Filed: March 6, 2014
    Publication date: November 20, 2014
    Inventors: Thomas D. Raymond, Richard J. Copland
  • Publication number: 20140268041
    Abstract: Improved systems and methods for ocular tomography are provided. These systems and methods can be used to improve the effectiveness of a wide variety of different ophthalmic diagnostic procedures, and various surgical and non-surgical treatments. One embodiment provides a system and method for determining ocular tomography data for the eye using a plenoptic detector. For example, an ocular tomography system can comprise a set of light sources configured to illuminate an eye, a plenoptic detector configured to receive images of the light sources reflected from surfaces of the eye and generate plenoptic image data representing the images, and a processing system coupled to the plenoptic detector. The processing system is configured to analyze the plenoptic image data to determine tomography data for the eye.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicant: AMO Wavefront Sciences, LLC.
    Inventor: Richard J. Copland
  • Publication number: 20140268056
    Abstract: Embodiments of this invention generally relate to systems and methods for wavefront interactive refraction display and more particularly to systems and methods for capturing and displaying eye wavefront interactive refraction data based on the desired refractive state of the patient's eye.
    Type: Application
    Filed: March 6, 2014
    Publication date: September 18, 2014
    Inventors: Daniel Neal, Stephen W. Farrer, Larry B. Voss, Thomas D. Raymond, Daniel Hamrick, John Dixson, Phillip Riera, Ron Rammage, Richard J. Copland
  • Publication number: 20140268044
    Abstract: Improved systems and methods for ocular topography and using a plenoptic detector are provided. For example, a multifunction ocular topography and aberrometry system can comprise a first set of light sources, a second light source, a plenoptic detector and a processing system coupled to the plenoptic detector. The first set of light sources and the second light source are configured to selectively illuminate an eye. The plenoptic detector is configured to selectively receive images of the first set of light sources reflected from a corneal surface of the eye and generate first plenoptic image data representing the images of the first set of light sources. The plenoptic detector is further configured receive images of the second light source reflected from a retina of the eye and generate second plenoptic image data representing the images of the second light source.
    Type: Application
    Filed: March 5, 2014
    Publication date: September 18, 2014
    Inventor: Richard J. Copland
  • Publication number: 20140268043
    Abstract: Embodiments described herein provide improved systems and methods for corneal pachymetry. These systems and methods can be used to improve the accuracy of corneal measurements that are used for a wide variety of different ophthalmic procedures. One embodiment provides a system and method for corneal pachymetry using a plenoptic detector. For example, a corneal pachymetry system can comprise a light source, a plenoptic detector and a processing system coupled to the plenoptic detector. The light source is configured to illuminate the cornea of the eye, and the plenoptic detector is positioned at an angle relative to the eye. The plenoptic detector is configured to receive an image of the light source reflected from the cornea and generate plenoptic image data representing the images. The processing system is coupled to the plenoptic detector and is configured to analyze the plenoptic image data to accurately determine the corneal thickness of the eye.
    Type: Application
    Filed: March 5, 2014
    Publication date: September 18, 2014
    Inventors: Thomas D. Raymond, Richard J. Copland
  • Publication number: 20090207377
    Abstract: A method and associated system improve accuracy in objective refraction measurements by including the measured distance between the photoreceptors of a subjects eye and the scattering location of light during the objective refraction measurements. Chromatic aberrations in the objective measurements are also compensated. The distance between the photoreceptors and the scattering location may be determined by adjusting a distance between a rotating speckled light pattern and an eye until the speckled light pattern appears to be stationary, or by employing a Scheiner disk.
    Type: Application
    Filed: February 18, 2009
    Publication date: August 20, 2009
    Applicant: AMO Wavefront Sciences, LLC
    Inventor: Richard J. Copland
  • Patent number: 6819413
    Abstract: An enhanced dynamic range wavefront sensing system includes a light source disposed on a first side of an optically transmissive device, a wavefront sensor disposed on a second side of an optically transmissive device, a relay imaging system disposed between the optically transmissive device and the wavefront sensor, and means for adjusting a distance between the light source and the optically transmissive device. Beneficially, the relay imaging system includes a range-limiting aperture to insure that the wavefront sensor never goes out of range so that a feedback system can be employed to move the light source one focal length away from the optically transmissive device.
    Type: Grant
    Filed: August 29, 2003
    Date of Patent: November 16, 2004
    Assignee: Wavefront Sciences, Inc.
    Inventors: Daniel R. Neal, Richard J. Copland, Ron R. Rammage, Daniel M. Topa, Daniel R. Hamrick
  • Publication number: 20040041978
    Abstract: An enhanced dynamic range wavefront sensing system includes a light source disposed on a first side of an optically transmissive device, a wavefront sensor disposed on a second side of an optically transmissive device, a relay imaging system disposed between the optically transmissive device and the wavefront sensor, and means for adjusting a distance between the light source and the optically transmissive device. Beneficially, the relay imaging system includes a range-limiting aperture to insure that the wavefront sensor never goes out of range so that a feedback system can be employed to move the light source one focal length away from the optically transmissive device.
    Type: Application
    Filed: August 29, 2003
    Publication date: March 4, 2004
    Inventors: Daniel R. Neal, Richard J. Copland, Ron R. Rammage, Daniel M. Topa, Daniel R. Hamrick
  • Patent number: 6634750
    Abstract: A method of measuring aberrations of a three-dimensional structure of an optical system, such as an eye, includes creating a plurality of light beams, optically imaging the light beams and projecting the light beams onto different locations in an optical system, receiving scattered light from each of the locations, and detecting individual wavefronts of the scattered light. The plurality of light beams may be created and projected simultaneously or sequentially. A system for measuring aberrations of a three-dimensional structure of an optical system includes a light source creating a plurality of light beams, an optical imaging system optically imaging the light beams and projecting the light beams onto different locations in the target optical system, and a wavefront sensor receiving scattered light from each of the locations and detecting individual wavefronts of the scattered light.
    Type: Grant
    Filed: June 13, 2002
    Date of Patent: October 21, 2003
    Assignee: WaveFront Sciences, Inc.
    Inventors: Daniel R. Neal, Richard J. Copland
  • Publication number: 20030193647
    Abstract: An ophthalmic error measurement system includes a projecting optical system delivering light onto a retina of an eye, a pre-correction system which compensates a light beam to be injected into the eye for aberrations in the eye, the pre-correction system being positioned in between the projecting optical system and the eye, an imaging system which collects light scattered by the retina, and a detector receiving light returned by the retina from the imaging system. Use of the pre-correction system allows the end-to-end aberrations of the ocular system to be analyzed. The use of a pre-correction system also allows use of a minimized spot size on the retina, and all of its attendant advantages.
    Type: Application
    Filed: April 21, 2003
    Publication date: October 16, 2003
    Inventors: Daniel R. Neal, Darrell J. Armstrong, Daniel M. Topa, Richard J. Copland
  • Patent number: 6550917
    Abstract: An ophthalmic error measurement system includes a projecting optical system delivering light onto a retina of an eye, a pre-correction system which compensates a light beam to be injected into the eye for aberrations in the eye, the pre-correction system being positioned in between the projecting optical system and the eye, an imaging system which collects light scattered by the retina, and a detector receiving light returned by the retina from the imaging system. Use of the pre-correction system allows the end-to-end aberrations of the ocular system to be analyzed. The use of a pre-correction system also allows use of a minimized spot size on the retina, and all of its attendant advantages.
    Type: Grant
    Filed: October 20, 2000
    Date of Patent: April 22, 2003
    Assignee: WaveFront Sciences, Inc.
    Inventors: Daniel R. Neal, Darrell J. Armstrong, Daniel M. Topa, Richard J. Copland
  • Publication number: 20030038921
    Abstract: A method of measuring aberrations of a three-dimensional structure of an optical system, such as an eye, includes creating a plurality of light beams, optically imaging the light beams and projecting the light beams onto different locations in an optical system, receiving scattered light from each of the locations, and detecting individual wavefronts of the scattered light. The plurality of light beams may be created and projected simultaneously or sequentially. A system for measuring aberrations of a three-dimensional structure of an optical system includes a light source creating a plurality of light beams, an optical imaging system optically imaging the light beams and projecting the light beams onto different locations in the target optical system, and a wavefront sensor receiving scattered light from each of the locations and detecting individual wavefronts of the scattered light.
    Type: Application
    Filed: June 13, 2002
    Publication date: February 27, 2003
    Inventors: Daniel R. Neal, Richard J. Copland