Patents by Inventor Richard Jude Samulski

Richard Jude Samulski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160102297
    Abstract: This invention relates to modified parvovirus inverted terminal repeats (ITRs) that do not functionally interact with wild-type large Rep proteins, synthetic Rep proteins that functionally interact with the modified ITRs, and methods of using the same for delivery of nucleic acids to a cell or a subject. The modifications provide a novel Rep-ITR interaction that limits vector mobilization, increasing the safety of viral vectors.
    Type: Application
    Filed: October 26, 2015
    Publication date: April 14, 2016
    Inventors: Curtis Hewitt, Richard Jude Samulski
  • Patent number: 9169494
    Abstract: This invention relates to modified parvovirus inverted terminal repeats (ITRs) that do not functionally interact with wild-type large Rep proteins, synthetic Rep proteins that functionally interact with the modified ITRs, and methods of using the same for delivery of nucleic acids to a cell or a subject. The modifications provide a novel Rep-ITR interaction that limits vector mobilization, increasing the safety of viral vectors.
    Type: Grant
    Filed: January 12, 2011
    Date of Patent: October 27, 2015
    Assignee: The University of North Carolina at Chapel Hill
    Inventors: Curtis Hewitt, Richard Jude Samulski
  • Patent number: 9169492
    Abstract: The present invention provides methods and compositions for enhanced transduction of an adeno-associated virus (AAV) vector comprising a heterologous nucleic acid of interest wherein the AAV vector genome is oversized relative to a wild type AAV genome by employing a proteasome inhibitor.
    Type: Grant
    Filed: February 4, 2011
    Date of Patent: October 27, 2015
    Assignee: The University of North Carolina at Chapel Hill
    Inventors: Paul E. Monahan, Richard Jude Samulski
  • Publication number: 20150152142
    Abstract: The present invention provides AAV capsid proteins (VP1, VP2 and/or VP3) comprising a modification in the amino acid sequence in the three-fold axis loop 4 and virus capsids and virus vectors comprising the modified AAV capsid protein. In particular embodiments, the modification comprises a substitution of one or more amino acids at amino acid positions 585 to 590 (inclusive) of the native AAV2 capsid protein sequence or the corresponding positions of other AAV capsid proteins. The invention also provides methods of administering the virus vectors and virus capsids of the invention to a cell or to a subject in vivo.
    Type: Application
    Filed: November 17, 2014
    Publication date: June 4, 2015
    Inventors: ARAVIND ASOKAN, RICHARD JUDE SAMULSKI
  • Patent number: 9012224
    Abstract: The present invention is based, in part, on the discovery that parvovirus (including AAV) capsids can be engineered to incorporate small, selective regions from other parvoviruses that confer desirable properties. The inventors have discovered that in some cases as little as a single amino acid insertion or substitution from a first parvovirus (e.g., an AAV) into the capsid structure of another parvovirus (e.g., an AAV) to create a chimeric parvovirus is sufficient to confer one or more of the desirable properties of the first parvovirus to the resulting chimeric parvovirus and/or to confer a property that is not exhibited by the first parvovirus or is present to a lesser extent.
    Type: Grant
    Filed: January 3, 2011
    Date of Patent: April 21, 2015
    Assignees: The University of North Carolina at Chapel Hill, The University of Florida Research Foundation
    Inventors: Dawn E. Bowles, Chengwen Li, Joseph E. Rabinowitz, Josh Grieger, Mavis Agbandje-McKenna, Richard Jude Samulski
  • Patent number: 8889641
    Abstract: The present invention provides AAV capsid proteins (VP1, VP2 and/or VP3) comprising a modification in the amino acid sequence in the three-fold axis loop 4 and virus capsids and virus vectors comprising the modified AAV capsid protein. In particular embodiments, the modification comprises a substitution of one or more amino acids at amino acid positions 585 to 590 (inclusive) of the native AAV2 capsid protein sequence or the corresponding positions of other AAV capsid proteins. The invention also provides methods of administering the virus vectors and virus capsids of the invention to a cell or to a subject in vivo.
    Type: Grant
    Filed: February 11, 2010
    Date of Patent: November 18, 2014
    Assignee: The University of North Carolina at Chapel Hill
    Inventors: Aravind Asokan, Richard Jude Samulski
  • Publication number: 20140271551
    Abstract: This invention relates to synthetic adeno-associated virus (AAV) inverted terminal repeats (ITRs) that exhibit altered activities compared to a naturally occurring AAV ITR and methods of using the same for delivery of nucleic acids to a cell or a subject. The synthetic ITRs provide a larger packaging capacity and the ability to manipulate activities such as transduction efficiency, cellular response to transduction, and transcription.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Applicant: THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL
    Inventors: MATTHEW LOUIS HIRSCH, RICHARD JUDE SAMULSKI
  • Publication number: 20140242671
    Abstract: This invention relates to a HEK293 cell line that grows under animal component-free suspension conditions. The cell line is ideal for rapid and scalable production of adeno-associated virus (AAV) and supports production of all serotypes and chimera of AAV.
    Type: Application
    Filed: October 26, 2012
    Publication date: August 28, 2014
    Inventors: Joshua Grieger, Richard Jude Samulski
  • Patent number: 8809058
    Abstract: A method for the production of adeno-associated virus stocks and recombinant adeno-associated virus stocks that are substantially free of contaminating helper virus is described. The method utilizes transfection with helper virus vectors to replace the infection with helper virus used in the conventional method.
    Type: Grant
    Filed: June 17, 2008
    Date of Patent: August 19, 2014
    Assignee: The University of North Carolina at Chapel Hill
    Inventors: Forrest K. Ferrari, Xiao Xiao, Richard Jude Samulski
  • Patent number: 8784799
    Abstract: The present invention provides duplexed parvovirus vector genomes that are capable under appropriate conditions of forming a double-stranded molecule by intrastrand base-pairing. Also provided are duplexed parvovirus particles comprising the vector genome. Further disclosed are templates and methods for producing the duplexed vector genomes and duplexed parvovirus particles of the invention. Methods of administering these reagents to a cell or subject are also described. Preferably, the parvovirus capsid is an AAV capsid. It is further preferred that the vector genome comprises AAV terminal repeat sequences.
    Type: Grant
    Filed: January 28, 2013
    Date of Patent: July 22, 2014
    Assignee: The University of North Carolina at Chapel Hill
    Inventors: Richard Jude Samulski, Douglas M. McCarty
  • Publication number: 20130252325
    Abstract: The present invention provides duplexed parvovirus vector genomes that are capable under appropriate conditions of forming a double-stranded molecule by intrastrand base-pairing. Also provided are duplexed parvovirus particles comprising the vector genome. Further disclosed are templates and methods for producing the duplexed vector genomes and duplexed parvovirus particles of the invention. Methods of administering these reagents to a cell or subject are also described. Preferably, the parvovirus capsid is an AAV capsid. It is further preferred that the vector genome comprises AAV terminal repeat sequences.
    Type: Application
    Filed: January 28, 2013
    Publication date: September 26, 2013
    Applicant: The University of North Carolina at Chapel Hill
    Inventors: Richard Jude Samulski, Douglas M. McCarty
  • Publication number: 20130109742
    Abstract: This invention relates to modified parvovirus inverted terminal repeats (ITRs) that do not functionally interact with wild-type large Rep proteins, synthetic Rep proteins that functionally interact with the modified ITRs, and methods of using the same for delivery of nucleic acids to a cell or a subject. The modifications provide a novel Rep-ITR interaction that limits vector mobilization, increasing the safety of viral vectors.
    Type: Application
    Filed: January 12, 2011
    Publication date: May 2, 2013
    Inventors: Curtis Hewitt, Richard Jude Samulski
  • Patent number: 8361457
    Abstract: The present invention provides duplexed parvovirus vector genomes that are capable under appropriate conditions of forming a double-stranded molecule by intrastrand base-pairing. Also provided are duplexed parvovirus particles comprising the vector genome. Further disclosed are templates and methods for producing the duplexed vector genomes and duplexed parvovirus particles of the invention. Methods of administering these reagents to a cell or subject are also described. Preferably, the parvovirus capsid is an AAV capsid. It is further preferred that the vector genome comprises AAV terminal repeat sequences.
    Type: Grant
    Filed: August 2, 2010
    Date of Patent: January 29, 2013
    Assignee: The University of North Carolina at Chapel Hill
    Inventors: Richard Jude Samulski, Douglas M. McCarty
  • Publication number: 20130012574
    Abstract: The present invention provides methods and compositions for enhanced transduction of an adeno-associated virus (AAV) vector comprising a heterologous nucleic acid of interest wherein the AAV vector genome is oversized relative to a wild type AAV genome by employing a proteasome inhibitor.
    Type: Application
    Filed: February 4, 2011
    Publication date: January 10, 2013
    Inventors: Paul E. Monahan, Richard Jude Samulski
  • Publication number: 20120009268
    Abstract: The present invention provides AAV capsid proteins (VP1, VP2 and/or VP3) comprising a modification in the amino acid sequence in the three-fold axis loop 4 and virus capsids and virus vectors comprising the modified AAV capsid protein. In particular embodiments, the modification comprises a substitution of one or more amino acids at amino acid positions 585 to 590 (inclusive) of the native AAV2 capsid protein sequence or the corresponding positions of other AAV capsid proteins. The invention also provides methods of administering the virus vectors and virus capsids of the invention to a cell or to a subject in vivo.
    Type: Application
    Filed: February 11, 2010
    Publication date: January 12, 2012
    Applicant: THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL
    Inventors: Aravind Asokan, Richard Jude Samulski
  • Publication number: 20110104119
    Abstract: The present invention is based, in part, on the discovery that parvovirus (including AAV) capsids can be engineered to incorporate small, selective regions from other parvoviruses that confer desirable properties. The inventors have discovered that in some cases as little as a single amino acid insertion or substitution from a first parvovirus (e.g., an AAV) into the capsid structure of another parvovirus (e.g., an AAV) to create a chimeric parvovirus is sufficient to confer one or more of the desirable properties of the first parvovirus to the resulting chimeric parvovirus and/or to confer a property that is not exhibited by the first parvovirus or is present to a lesser extent.
    Type: Application
    Filed: January 3, 2011
    Publication date: May 5, 2011
    Inventors: Dawn E. Bowles, Chengwen Li, Joseph E. Rabinowitz, Josh Grieger, Mavis Agbandje-McKenna, Richard Jude Samulski
  • Patent number: 7923436
    Abstract: The invention uses recombinant parvoviruses, and particularly recombinant adeno-associated virus (rAAV) to deliver genes and DNA sequences for gene therapy following manipulation of the therapeutic virus for packaging and transport. The invention delivers therapeutic viral vectors via rAAV affixed to support matrixes (i.e., sutures, surgically implantable materials, grafts, and the like).
    Type: Grant
    Filed: April 5, 2007
    Date of Patent: April 12, 2011
    Assignee: University of North Carolina - Chapel Hill
    Inventors: Paul E. Monahan, Richard Jude Samulski, Joseph E. Rabinowitz
  • Patent number: 7892809
    Abstract: The present invention is based, in part, on the discovery that parvovirus (including AAV) capsids can be engineered to incorporate small, selective regions from other parvoviruses that confer desirable properties. The inventors have discovered that in some cases as little as a single amino acid insertion or substitution from a first parvovirus (e.g., an AAV) into the capsid structure of another parvovirus (e.g., an AAV) to create a chimeric parvovirus is sufficient to confer one or more of the desirable properties of the first parvovirus to the resulting chimeric parvovirus and/or to confer a property that is not exhibited by the first parvovirus or is present to a lesser extent.
    Type: Grant
    Filed: December 15, 2005
    Date of Patent: February 22, 2011
    Assignees: The University of North Carolina at Chapel Hill, The University of Florida Research Foundation
    Inventors: Dawn E. Bowles, Chengwen Li, Joseph E. Rabinowitz, Josh Grieger, Mavis Agbandje-McKenna, Richard Jude Samulski
  • Patent number: 7867484
    Abstract: The present invention is based on the finding that parvovirus (including AAV) capsids can be engineered to incorporate small, selective regions from other parvoviruses that confer desirable properties. In some embodiments, a substitution of a single amino acid that is unique to the AAV6 capsid (Lys-531) among other AAVs that have been characterized to date can confer one or more desirable properties to other AAVs.
    Type: Grant
    Filed: January 26, 2007
    Date of Patent: January 11, 2011
    Assignee: University of North Carolina at Chapel Hill
    Inventors: Richard Jude Samulski, Zhijian Wu, Aravind Asokan
  • Publication number: 20100310516
    Abstract: The present invention provides duplexed parvovirus vector genomes that are capable under appropriate conditions of forming a double-stranded molecule by intrastrand base-pairing. Also provided are duplexed parvovirus particles comprising the vector genome. Further disclosed are templates and methods for producing the duplexed vector genomes and duplexed parvovirus particles of the invention. Methods of administering these reagents to a cell or subject are also described. Preferably, the parvovirus capsid is an AAV capsid. It is further preferred that the vector genome comprises AAV terminal repeat sequences.
    Type: Application
    Filed: August 2, 2010
    Publication date: December 9, 2010
    Inventors: Richard Jude Samulski, Douglas M. McCarty