Patents by Inventor Richard L. Kennedy

Richard L. Kennedy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090272228
    Abstract: One non-limiting embodiment of an apparatus for forming an alloy powder or preform includes a melting assembly, an atomizing assembly, and a field generating assembly, and a collector. The melting assembly produces at least one of a stream of a molten alloy and a series of droplets of a molten alloy, and may be substantially free from ceramic in regions contacted by the molten alloy. The atomizing assembly generates electrons and impinges the electrons on molten alloy from the melting assembly, thereby producing molten alloy particles. The field generating assembly produces at least one of an electrostatic field and an electromagnetic field between the atomizing assembly and the collector. The molten alloy particles interact with the at least one field, which influences at least one of the acceleration, speed, and direction of the molten alloy particles. Related methods also are disclosed.
    Type: Application
    Filed: July 14, 2009
    Publication date: November 5, 2009
    Applicant: ATI Properties, Inc.
    Inventors: Robin M. Forbes Jones, Richard L. Kennedy
  • Patent number: 7578960
    Abstract: One non-limiting embodiment of an apparatus for forming an alloy powder or preform includes a melting assembly, an atomizing assembly, and a field generating assembly, and a collector. The melting assembly produces at least one of a stream of a molten alloy and a series of droplets of a molten alloy, and may be substantially free from ceramic in regions contacted by the molten alloy. The atomizing assembly generates electrons and impinges the electrons on molten alloy from the melting assembly, thereby producing molten alloy particles. The field generating assembly produces at least one of an electrostatic field and an electromagnetic field between the atomizing assembly and the collector. The molten alloy particles interact with the at least one field, which influences at least one of the acceleration, speed, and direction of the molten alloy particles. Related methods also are disclosed.
    Type: Grant
    Filed: September 22, 2005
    Date of Patent: August 25, 2009
    Assignee: ATI Properties, Inc.
    Inventors: Robin M. Forbes Jones, Richard L. Kennedy
  • Patent number: 7531054
    Abstract: Embodiments of the present disclosure relate to nickel-base alloys and methods of direct aging nickel-base alloys. More specifically, certain embodiments of the present disclosure relate to methods of direct aging 718PlusĀ® nickel-base alloy to impart improved mechanical properties, such as, but not limited to, tensile strength, yield strength, low cycle fatigue, fatigue crack growth, and creep and rupture life to the alloys. Other embodiments of the present disclosure relate to direct aged 718PlusĀ® nickel-base alloy, and articles of manufacture made therefrom, having improved mechanical properties, such as, but not limited to, tensile strength, yield strength, low cycle fatigue, fatigue crack growth, and creep and rupture life.
    Type: Grant
    Filed: September 6, 2005
    Date of Patent: May 12, 2009
    Assignee: ATI Properties, Inc.
    Inventors: Richard L. Kennedy, Wei-Di Cao
  • Patent number: 7527702
    Abstract: Embodiments of the present invention relate to nickel-base alloys, and in particular 718-type nickel-base alloys, having a desired microstructure that is predominantly strengthened by ??-phase precipitates and comprises an amount of at least one grain boundary precipitate. Other embodiments of the present invention relate to methods of heat treating nickel-base alloys, and in particular 718-type nickel-base alloys, to develop a desired microstructure that can impart thermally stable mechanical properties. Articles of manufacture using the nickel-base alloys and methods of heat treating nickel-base alloys according to embodiments of the present invention are also disclosed.
    Type: Grant
    Filed: October 6, 2006
    Date of Patent: May 5, 2009
    Assignee: ATI Properties, Inc.
    Inventors: Wei-Di Cao, Richard L. Kennedy
  • Patent number: 7520947
    Abstract: Embodiments of the present invention provide methods of processing cobalt alloys including, in weight percent, from 26 to 30 chromium, from 5 to 7 molybdenum, and greater than 50 cobalt, the methods comprises cold working and aging the alloys such that after aging the cobalt alloys have a hardness of at least Rockwell C 50. Other embodiments provide methods of selectively cold working at least one portion of a cobalt alloy, and subsequently aging the alloy, such after aging, the selectively cold worked portions of the alloy have a higher hardness value then portions of the alloy that were not selectively cold worked. The present invention also discloses cobalt alloys, implants, and articles of manufacture made from cobalt alloys within the present invention.
    Type: Grant
    Filed: May 23, 2003
    Date of Patent: April 21, 2009
    Assignee: ATI Properties, Inc.
    Inventors: Richard L. Kennedy, Henry E. Lippard
  • Patent number: 7491275
    Abstract: Embodiments of the present invention relate to nickel-base alloys, and in particular 718-type nickel-base alloys, having a desired microstructure that is predominantly strengthened by ??-phase precipitates and comprises an amount of at least one grain boundary precipitate. Other embodiments of the present invention relate to methods of heat treating nickel-base alloys, and in particular 718-type nickel-base alloys, to develop a desired microstructure that can impart thermally stable mechanical properties. Articles of manufacture using the nickel-base alloys and methods of heat treating nickel-base alloys according to embodiments of the present invention are also disclosed.
    Type: Grant
    Filed: October 6, 2006
    Date of Patent: February 17, 2009
    Assignee: ATI Properties, Inc.
    Inventors: Wei-Di Cao, Richard L. Kennedy
  • Publication number: 20080257457
    Abstract: A nickel-base alloy having favorable toughness and thermal fatigue resistance comprises, in weight percentages based on total alloy weight: 9 to 20 chromium; 25 to 35 iron; 1 to 3 molybdenum; 3.0 to 5.5 niobium; 0.2 to 2.0 aluminum; 0.3 to 3.0 titanium; less than 0.10 carbon; no more than 0.01 boron; nickel; and incidental impurities. Also disclosed are die casting dies, other tooling, and other articles of manufacture made from or comprising the nickel-base alloy.
    Type: Application
    Filed: April 19, 2007
    Publication date: October 23, 2008
    Applicant: ATI Properties, Inc.
    Inventors: Wei-Di Cao, Richard L. Kennedy, Michael M. Antony, John W. Smythe
  • Publication number: 20080237200
    Abstract: An apparatus for melting an electrically conductive metallic material includes a vacuum chamber and a hearth disposed in the vacuum chamber. At least one wire-discharge ion plasma electron emitter is disposed in or adjacent the vacuum chamber and is positioned to direct a wide-area field of electrons into the vacuum chamber, wherein the wide-area electron field has sufficient energy to heat the electrically conductive metallic material to its melting temperature. The apparatus may further include at least one of a mold and an atomizing apparatus which is in communication with the vacuum chamber and is positioned to receive molten material from the hearth.
    Type: Application
    Filed: March 26, 2008
    Publication date: October 2, 2008
    Applicant: ATI Properties, Inc.
    Inventors: Robin M. Forbes Jones, Richard L. Kennedy
  • Publication number: 20080223174
    Abstract: The present invention is directed to methods and apparatus that use electrostatic and/or electromagnetic fields to enhance the process of spray forming preforms or powders. The present invention also describes methods and apparatus for atomization and heat transfer with non-equilibrium plasmas. The present invention is also directed to articles, particularly for use in gas turbine engines, produced by the methods of the invention.
    Type: Application
    Filed: August 20, 2007
    Publication date: September 18, 2008
    Inventors: Robin M. Forbes Jones, Richard L. Kennedy, Helmut Gerhard Conrad, Ted Szylowiec, Wayne Conrad, Richard Stanley Phillips, Andrew Richard Henry Phillips
  • Publication number: 20080179034
    Abstract: One non-limiting embodiment of an apparatus for forming an alloy powder or preform includes a melting assembly, an atomizing assembly, and a collector. The melting assembly produces at least one of a stream of a molten alloy and a series of droplets of a molten alloy, and may be substantially free from ceramic in regions contacted by the molten alloy. The atomizing assembly generates electrons and impinges the electrons on molten alloy from the melting assembly, thereby producing molten alloy particles.
    Type: Application
    Filed: March 21, 2008
    Publication date: July 31, 2008
    Applicant: ATI Properties, Inc.
    Inventors: Robin M. Forbes Jones, Richard L. Kennedy
  • Patent number: 7374598
    Abstract: The present invention is directed to methods and apparatus that use electrostatic and/or electromagnetic fields to enhance the process of spray forming preforms or powders. The present invention also describes methods and apparatus for atomization and heat transfer with non-equilibrium plasmas. The present invention is also directed to articles, particularly for use in gas turbine engines, produced by the methods of the invention.
    Type: Grant
    Filed: August 9, 2004
    Date of Patent: May 20, 2008
    Assignee: ATI Properties, Inc.
    Inventors: Robin M. Forbes Jones, Richard L. Kennedy, Helmut Gerhard Conrad, Ted Szylowiec, Wayne Conrad, Richard Stanley Phillips, Andrew Richard Henry Phillips
  • Patent number: 7156932
    Abstract: Embodiments of the present invention relate to nickel-base alloys, and in particular 718-type nickel-base alloys, having a desired microstructure that is predominantly strengthened by ??-phase precipitates and comprises an amount of at least one grain boundary precipitate. Other embodiments of the present invention relate to methods of heat treating nickel-base alloys, and in particular 718-type nickel-base alloys, to develop a desired microstructure that can impart thermally stable mechanical properties. Articles of manufacture using the nickel-base alloys and methods of heat treating nickel-base alloys according to embodiments of the present invention are also disclosed.
    Type: Grant
    Filed: October 6, 2003
    Date of Patent: January 2, 2007
    Assignee: ATI Properties, Inc.
    Inventors: Wei-Di Cao, Richard L. Kennedy
  • Patent number: 7154932
    Abstract: A method for refining and casting metals and metal alloys includes melting and refining a metallic material and then casting the refined molten material by a nucleated casting technique. The refined molten material is provided to the atomizing nozzle of the nucleated casting apparatus through a transfer apparatus adapted to maintain the purity of the molten refined material. An apparatus including a melting and refining apparatus, a transfer apparatus, and a nucleated casting apparatus, in serial fluid communication, also is disclosed.
    Type: Grant
    Filed: May 30, 2002
    Date of Patent: December 26, 2006
    Assignee: ATI Properties, Inc.
    Inventors: Robin M. Forbes Jones, Richard L. Kennedy, Ramesh S. Minisandram
  • Publication number: 20040236433
    Abstract: Embodiments of the present invention provide methods of processing cobalt alloys including, in weight percent, from 26 to 30 chromium, from 5 to 7 molybdenum, and greater than 50 cobalt, the methods comprises cold working and aging the alloys such that after aging the cobalt alloys have a hardness of at least Rockwell C 50. Other embodiments provide methods of selectively cold working at least one portion of a cobalt alloy, and subsequently aging the alloy, such after aging, the selectively cold worked portions of the alloy have a higher hardness value then portions of the alloy that were not selectively cold worked. The present invention also discloses cobalt alloys, implants, and articles of manufacture made from cobalt alloys within the present invention.
    Type: Application
    Filed: May 23, 2003
    Publication date: November 25, 2004
    Inventors: Richard L. Kennedy, Henry E. Lippard
  • Patent number: 6772961
    Abstract: The present invention is directed to methods and apparatus that use electrostatic and/or electromagnetic fields to enhance the process of spray forming preforms or powders. The present invention also describes methods and apparatus for atomization and heat transfer with non-equilibrium plasmas. The present invention is also directed to articles, particularly for use in gas turbine engines, produced by the methods of the invention.
    Type: Grant
    Filed: June 18, 2001
    Date of Patent: August 10, 2004
    Assignee: ATI Properties, Inc.
    Inventors: Robin M. Forbes Jones, Richard L. Kennedy, Helmut Gerhard Conrad, Ted Szylowiec, Wayne Conrad, Richard Stanley Phillips, Andrew Richard Henry Phillips
  • Patent number: 6605164
    Abstract: A nickel-based fine grained alloy consisting essentially of 40-55 wt % Ni, 14.5-21 wt % Cr, 2.5-5.5 wt % Nb+Ta, up to 3.3 wt % Mo, 0.65-2.00 wt % Ti, 0.10-0.8 wt % Al, up to 0.35 wt % Mn, up to 0.07 wt % C, up to 0.015 wt % S, up to 0.35 wt % Si, at least 0.016 wt % P, from 0.003 % to 0.030 wt % B, and the balance Fe and incidental impurities, has a high stress rupture life.
    Type: Grant
    Filed: April 30, 2001
    Date of Patent: August 12, 2003
    Assignee: ATI Properties, Inc.
    Inventors: Richard L. Kennedy, Wei-Di Cao
  • Publication number: 20030016723
    Abstract: A method for refining and casting metals and metal alloys includes melting and refining a metallic material and then casting the refined molten material by a nucleated casting technique. The refined molten material is provided to the atomizing nozzle of the nucleated casting apparatus through a transfer apparatus adapted to maintain the purity of the molten refined material. An apparatus including a melting and refining apparatus, a transfer apparatus, and a nucleated casting apparatus, in serial fluid communication, also is disclosed.
    Type: Application
    Filed: May 30, 2002
    Publication date: January 23, 2003
    Inventors: Robin M. Forbes Jones, Richard L. Kennedy, Ramesh S. Minisandram
  • Patent number: 6496529
    Abstract: A method for refining and casting metals and metal alloys includes melting and refining a metallic material and then casting the refined molten material by a nucleated casting technique. The refined molten material is provided to the atomizing nozzle of the nucleated casting apparatus through a transfer apparatus adapted to maintain the purity of the molten refined material. An apparatus including a melting and refining apparatus, a transfer apparatus, and a nucleated casting apparatus, in serial fluid communication, also is disclosed.
    Type: Grant
    Filed: November 15, 2000
    Date of Patent: December 17, 2002
    Assignee: ATI Properties, Inc.
    Inventors: Robin M. Forbes Jones, Richard L. Kennedy, Ramesh S. Minisandram
  • Publication number: 20020113151
    Abstract: The present invention is directed to methods and apparatus that use electrostatic and/or electromagnetic fields to enhance the process of spray forming preforms or powders. The present invention also describes methods and apparatus for atomization and heat transfer with non-equilibrium plasmas. The present invention is also directed to articles, particularly for use in gas turbine engines, produced by the methods of the invention.
    Type: Application
    Filed: June 18, 2001
    Publication date: August 22, 2002
    Inventors: Robin M. Forber Jones, Richard L. Kennedy, Helmut Gerhard Conrad, Ted Szylowiec, Wayne Conrad, Richard Stanley Phillips, Andrew Richard Henry Phillips
  • Publication number: 20020036037
    Abstract: A nickel-based fine grained alloy consisting essentially of 40-55 wt % Ni, 14.5-21 wt % Cr, 2.5-5.5 wt % Nb+Ta, up to 3.3 wt % Mo, 0.65-2.00 wt % Ti, 0.10-0.8 wt % Al, up to 0.35 wt % Mn, up to 0.07 wt % C, up to 0.015 wt % S, up to 0.35 wt % Si, at least 0.016 wt % P, from 0.003 % to 0.030 wt % B, and the balance Fe and incidental impurities, has a high stress rupture life.
    Type: Application
    Filed: April 30, 2001
    Publication date: March 28, 2002
    Inventors: Richard L. Kennedy, Wei-Di Cao