Patents by Inventor Richard Parsons

Richard Parsons has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20050183821
    Abstract: A RF sensor for sensing and analyzing parameters of plasma processing. The RF sensor is provided with a plasma processing tool and an antenna for receiving RF energy radiated from the plasma processing tool. The antenna is located proximate to the plasma processing tool so as to be non-invasive. Additionally, the RF sensor may be configured for wideband reception of multiple harmonics of the RF energy that is radiated from the plasma processing tool. Further, the RF sensor may be coupled to a high pass filter and a processor for processing the received RF energy. Additionally, the antenna may be located within an enclosure with absorbers to reduce the interference experienced by the RF sensor. Additionally, a tool control may be coupled to the processor to provided to adjust and maintain various parameters of plasma processing according to the information provided by the received RF energy.
    Type: Application
    Filed: December 29, 2004
    Publication date: August 25, 2005
    Applicant: Tokyo Electron Limited
    Inventor: Richard Parsons
  • Patent number: 6917204
    Abstract: A method for controlling the non-uniformities of plasma-processed semiconductor wafers by supplying the plasma with two electrical signals: a primary electrical signal that is used to excite the plasma, and a supplemental electrical signal. The supplemental signal may be composed of a plurality of electrical signals, each with a frequency harmonic to that of the primary signal. The phase of the supplemental signal is controlled with respect to the phase of the primary signal. By adjusting the parameters of the supplemental signal with respect to the primary signal, the user can control the parameters of the resultant plasma and, therefore, control the non-uniformities induced in the semiconductor wafer.
    Type: Grant
    Filed: July 3, 2003
    Date of Patent: July 12, 2005
    Assignee: Tokyo Electron Limited
    Inventors: Andrej S. Mitrovic, Jovan Jevtic, Richard Parsons, Murray D. Sirkis
  • Publication number: 20050145334
    Abstract: A RF sensor for sensing and analyzing parameters of plasma processing. The RF sensor is provided with a plasma processing tool and an antenna for receiving RF energy radiated from the plasma processing tool. The antenna is located proximate to the plasma processing tool so as to be non-invasive. Additionally, the RF sensor may be configured for wideband reception of multiple harmonics of the RF energy that is radiated from the plasma processing tool. Further, the RF sensor may be coupled to a high pass filter and a processor for processing the received RF energy. Additionally, the antenna may be located within an enclosure with absorbers to reduce the interference experienced by the RF sensor. Additionally, a tool control may be coupled to the processor to provided to adjust and maintain various parameters of plasma processing according to the information provided by the received RF energy.
    Type: Application
    Filed: December 27, 2004
    Publication date: July 7, 2005
    Applicant: Tokyo Electron Limited
    Inventor: Richard Parsons
  • Patent number: 6884635
    Abstract: An RF power supply system (200) for use with an electrode (60) in a plasma reactor system (10) capable of supporting a plasma (32) with a plasma load impedance (ZR), wherein the electrode comprises a plurality of electrode segments (62a,62b, . . . , 62n). The system comprises a master oscillator (210), and a plurality of RF power supply subsystems (220a, 220b, . . . 220n) each electronically connected thereto, and to respective ones of the electrode segments. Each RF power supply subsystem includes a phase shifter (224), an amplifier/power supply (230), a circulator (236), a directional coupler (242), and a match network (MN/L). The latter has a match network impedance. The system further includes a control system (184) electronically connected to each RF power supply subsystem.
    Type: Grant
    Filed: September 17, 2002
    Date of Patent: April 26, 2005
    Assignee: Tokyo Electron Limited
    Inventor: Richard Parsons
  • Publication number: 20050020406
    Abstract: An idle speed compensation system for a vehicle includes an idle speed control system that varies airflow to an engine at idle and a transmission driven by the engine. A controller communicates with the idle speed control system, the engine, and the transmission. The controller generates an idle speed compensation signal based on a transmission load.
    Type: Application
    Filed: July 22, 2003
    Publication date: January 27, 2005
    Inventors: William Aldrich, Glenn O'Connell, Michael Velliky, Leonard Wozniak, Richard Parsons
  • Publication number: 20050001555
    Abstract: A system and method for maintaining a plasma in a plasma region by supplying RF power at a fundamental frequency to the plasma region together with a gas in order to create an RF electromagnetic field which interacts with the gas to create a plasma that contains electromagnetic energy components at frequencies that are harmonics of the fundamental frequency. The components at frequencies that are harmonics of the fundamental frequency are reduced by placing RF energy absorbing resistive loads in energy receiving communication with the plasma, the resistive loads having a frequency dependent attenuation characteristic such that the resistive loads attenuate electrical energy at frequencies higher than the fundamental frequency more strongly than energy at the fundamental frequency.
    Type: Application
    Filed: June 3, 2004
    Publication date: January 6, 2005
    Applicant: Tokyo Electron Limited
    Inventors: Richard Parsons, Wayne Johnson
  • Publication number: 20040250108
    Abstract: The facility monitor (670) is used to monitor and collect measured parameter data and alarm status data for a facility (615), such as a semiconductor processing facility. A graphical user interface (GUI) is used for monitoring the current status (625) and accessing the system history of the facility (645). The GUI provides easily readable screens where the graphical display is organized so that the measured parameter data is logically presented to the user, alarm status data are clearly indicated to the user, and the user can efficiently review the data and respond.
    Type: Application
    Filed: March 1, 2004
    Publication date: December 9, 2004
    Inventors: Richard Parsons, Deana R. Delp
  • Publication number: 20040236451
    Abstract: A process monitoring system (100) for monitoring a plasma processing system. The process monitoring system (100) includes a plurality of processing subsystems (120), and a control system (110) coupled to the processing subsystems (120). The control system (110) is configured to receive monitor data from the processing subsystems (120) and send control data to the processing subsystems (120). The process monitoring system (100) also includes an external interface (140) coupled to the control system (110), where the external interface (140) includes a paging system. The process monitoring system further includes a man-machine interface (MMI) coupled to the control system (110). The MMI is configured to display the monitor data, display the control data, and access the paging system.
    Type: Application
    Filed: July 1, 2004
    Publication date: November 25, 2004
    Inventors: Richard Parsons, Deana R. Delp
  • Publication number: 20040232920
    Abstract: A wall film monitoring system includes first and second microwave mirrors in a plasma processing chamber each having a concave surface. The concave surface of the second mirror is oriented opposite the concave surface of the first mirror. A power source is coupled to the first mirror and configured to produce a microwave signal. A detector is coupled to at least one of the first mirror and the second mirror and configured to measure a vacuum resonance voltage of the microwave signal. A control system is connected to the detector that compares a first measured voltage and a second measured voltage and determines whether the second voltage exceeds a threshold value. A method of monitoring wall film in a plasma chamber includes loading a wafer in the chamber, setting a frequency of a microwave signal output to a resonance frequency, and measuring a first vacuum resonance voltage of the microwave signal.
    Type: Application
    Filed: July 9, 2004
    Publication date: November 25, 2004
    Inventors: Eric J Strang, Richard Parsons
  • Publication number: 20040210407
    Abstract: A non-linear test load is provided for calibrating a plasma system. The test load is a substrate for modeling the electrical characteristics of the plasma such that multi frequency testing can be performed in the absence of a plasma reaction. An exemplary substrate includes a first semiconductor junction for providing a non-linear response to the multi-frequency RF source provided from the anode. The first semiconductor junction exhibits a first capacitance for modeling a first plasma sheath of the anode. A plasma component is responsive to the first semiconductor junction and exhibits a resistance for modeling a resistance of the plasma, an inductance for modeling an inductance of the plasma, and a gap capacitance for modeling capacitance of the plasma.
    Type: Application
    Filed: December 30, 2003
    Publication date: October 21, 2004
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Bill H. Quon, Richard Parsons
  • Publication number: 20040168770
    Abstract: A method and apparatus for generating and controlling a plasma (130) formed in a capacitively coupled plasma system (100) having a plasma electrode (140) and a bias electrode in the form of a workpiece support member (170), wherein the plasma electrode is unitary and has multiple regions (Ri) defined by a plurality of RF power feed lines (156) and the RF power delivered thereto. The electrode regions may also be defined as electrode segments (420) separated by insulators (426). A set of process parameters A={n, &tgr;i, &PHgr;i, Pi, S; Li} is defined; wherein n is the number of RF feed lines connected to the electrode upper surface at locations Li, &tgr;i is the on-time of the RF power for the ith RF feed line, &PHgr;i is the phase of the ith RF feed line relative to a select one of the other RF feed lines, Pi is the RF power delivered to the electrode through the ith RF feed line at location Li, and S is the sequencing of RF power to the electrode through the RF feed lines.
    Type: Application
    Filed: March 5, 2004
    Publication date: September 2, 2004
    Applicant: Tokyo Electron Limited
    Inventors: Andrej S. Mitrovic, Eric J. Strang, Murray D. Sirkis, Bill H. Quon, Richard Parsons, Yuji Tsukamoto
  • Patent number: 6731879
    Abstract: To diminish the risk of interruption of traffic in a submarine optical cable system in the region of the shore where damage is most likely to occur, the landing-stage of the system has duplicated spaced-apart cables between a submerged branching unit and an onshore submarine line terminal endstation. Various changeover modes are disclosed, including those where both cables are coupled to signals at all times and changeover is accomplished by blocking amplifiers.
    Type: Grant
    Filed: August 15, 2000
    Date of Patent: May 4, 2004
    Assignee: Alcatel
    Inventors: David Antony Frisch, Nigel Richard Parsons
  • Publication number: 20040035837
    Abstract: A method for controlling the non-uniformities of plasma-processed semiconductor wafers by supplying the plasma with two electrical signals: a primary electrical signal that is used to excite the plasma, and a supplemental electrical signal. The supplemental signal may be composed of a plurality of electrical signals, each with a frequency harmonic to that of the primary signal. The phase of the supplemental signal is controlled with respect to the phase of the primary signal. By adjusting the parameters of the supplemental signal with respect to the primary signal, the user can control the parameters of the resultant plasma and, therefore, control the non-uniformities induced in the semiconductor wafer.
    Type: Application
    Filed: July 3, 2003
    Publication date: February 26, 2004
    Applicant: Tokyo Electron Limited
    Inventors: Andrej S. Mitrovic, Jovan Jevtic, Richard Parsons, Murray D. Sirkis
  • Publication number: 20040018127
    Abstract: A segmented chuck provides uniform processing of a workpiece (e.g., a wafer) with a plasma in a process chamber. The segmented chuck includes a segmented electrode having a plurality of sub-electrodes where the sub-electrodes are electrically isolated from one another by insulating connections and the segmented electrode defines a process surface that is adapted to receive the workpiece. The segmented chuck also includes a plurality of RF drivers for driving the sub-electrodes with RF biases, where the RF biases couple the workpiece with the plasma in the process chamber. By allowing the workpiece to be placed on the chuck, the coupling between the plasma and the workpiece is enhanced. By allowing the sub-electrodes to be independently driven by RF drivers, more uniform processing can be achieved with larger workpieces.
    Type: Application
    Filed: June 11, 2003
    Publication date: January 29, 2004
    Applicant: Tokyo Electron Limited
    Inventors: Maolin Long, Richard Parsons, Wayne L. Johnson
  • Publication number: 20030137251
    Abstract: A method and apparatus for generating and controlling a plasma (130) formed in a capacitively coupled plasma system (100) having a plasma electrode (140) and a bias electrode in the form of a workpiece support member (170), wherein the plasma electrode is unitary and has multiple regions (Ri) defined by a plurality of RF power feed lines (156) and the RF power delivered thereto. The electrode regions may also be defined as electrode segments (420) separated by insulators (426). A set of process parameters A={n, &tgr;i, &PHgr;i, Pi, S; Li} is defined, herein n is the number of RF feed lines connected to the electrode upper surface at locations Li, &tgr;i is the on-time of the RF power for the ith RF feed line, &PHgr;i is the phase of the ith RF feed line relative to a select one of the other RF feed lines, Pi is the RF power delivered to the electrode through the ith RF feed line at location Li, and S is the sequencing of RF power to the electrode through the RF feed lines.
    Type: Application
    Filed: February 7, 2003
    Publication date: July 24, 2003
    Inventors: Andrej S. Mitrovic, Eric J. Strang, Murray D. Sirkis, Bill H. Quon, Richard Parsons, Yuji Tsukamoto
  • Publication number: 20030084999
    Abstract: A plasma processing system that includes a chamber enclosing a plasma region. The system has a plasma source including a power source coupled to an electrode provided within the chamber to deliver RF power into the plasma region. The RF power forms an RF electromagnetic field that interacts with a gas in the plasma region to create a plasma. In one embodiment, an absorbing surface including an RF absorber is provided within the plasma region, and a protective layer is provided on the absorber to seal the absorber from plasma within the plasma region. Alternately, a non-reflecting surface is provided within the plasma region. The non-reflecting surface comprises a layer of dielectric material and acts to minimize reflection of RF power at a design frequency. The non-reflecting surface further includes a thickness equivalent to the quarter wavelength of a wave propagating in the dielectric layer at the design frequency.
    Type: Application
    Filed: November 5, 2002
    Publication date: May 8, 2003
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Richard Parsons, Steven T. Fink
  • Publication number: 20030081280
    Abstract: An apparatus and a method for monitoring an optical transmission line. An optical pilot signal of a predetermined duration is transmitted along said optical transmission line and a return signal is sent back from a signal returner along the same transmission line corresponding to at least part of said optical pilot signal. The signal returner is positioned at a predetermined point along the optical transmission line. An optical detection apparatus detects said optical pilot signal and also detects said return signal. A monitoring unit receives detection signals from said optical detection apparatus and determins the time relationship between the predetermined duration of the optical pilot signal and the round-trip transit time of the optical pilot signal. A first monitoring signal is generated when the determined time relationship has a predetermined value, and at least one further monitoring signal is generated in other cases.
    Type: Application
    Filed: October 28, 2002
    Publication date: May 1, 2003
    Applicant: ALCATEL
    Inventor: Nigel Richard Parsons
  • Publication number: 20030079983
    Abstract: A method and apparatus for generating and controlling a plasma formed in a capacitively coupled plasma source having a plasma electrode and a bias electrode, the plasma electrode being composed of a plurality of sub-electrodes that are electrically insulated from one another and the plasma being formed in a plasma region between the plasma electrode and the bias electrode, the plasma being generated and controlled by: coupling RF power to the plasma region via each sub-electrode; and causing the RF power coupled via one of the sub-electrodes to be able to differ in at least one of power, frequency, phase, and waveform from the RF power coupled via another one of the sub-electrodes.
    Type: Application
    Filed: August 26, 2002
    Publication date: May 1, 2003
    Inventors: Maolin Long, Richard Parsons, Wayne Johnson
  • Publication number: 20030052085
    Abstract: An RF power supply system (200) for use with an electrode (60) in a plasma reactor system (10) capable of supporting a plasma (32) with a plasma load impedance (ZR), wherein the electrode comprises a plurality of electrode segments (62a,62b, . . . , 62n). The system comprises a master oscillator (210), and a plurality of RF power supply subsystems (220a, 220b, . . . 220n) each electronically connected thereto, and to respective ones of the electrode segments. Each RF power supply subsystem includes a phase shifter (224), an amplifier/power supply (230), a circulator (236), a directional coupler (242), and a match network (MN/L). The latter has a match network impedance. The system further includes a control system (184) electronically connected to each RF power supply subsystem.
    Type: Application
    Filed: September 17, 2002
    Publication date: March 20, 2003
    Inventor: Richard Parsons
  • Patent number: 6535785
    Abstract: A system and method for monitoring the conditions in a gas plasma processing system while varying or modulating the RF power supplied to the system, so that resulting signals of the electrical circuits of the system provide information regarding operational parameters of the system or the state of a process. Significant improvements in sensitivity and accuracy over conventional techniques are thereby achieved. In addition, the plasma processing system can be thoroughly tested and characterized before delivery, to allow more accurate monitoring of and greater control over a process, thereby improving quality control/assurance of substrates being produced by the system. The information obtained by the modulation technique can be displayed on a monitor screen, in order to allow an operator to accurately monitor the system/process and diagnose any problems with the system/process.
    Type: Grant
    Filed: October 31, 2001
    Date of Patent: March 18, 2003
    Assignee: Tokyo Electron Limited
    Inventors: Wayne Johnson, Richard Parsons