Patents by Inventor Richard S. Harris

Richard S. Harris has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6534743
    Abstract: A uniform laser spot, such as from an imaged shaped Gaussian output (118) or a clipped Gaussian spot, that is less than 20 &mgr;m in diameter can be employed for both thin and thick film resistor trimming to substantially reduce microcracking. These spots can be generated in an ablative, nonthermal, UV laser wavelength to reduce the HAZ and/or shift in TCR.
    Type: Grant
    Filed: January 31, 2002
    Date of Patent: March 18, 2003
    Assignee: Electro Scientific Industries, Inc.
    Inventors: Edward J. Swenson, Yunlong Sun, Richard S. Harris
  • Publication number: 20030047541
    Abstract: A quasi-CW diode-pumped, A-O Q-switched solid-state harmonic laser system (10) synchronizes timing of the quasi-CW pumping with movement of the positioning system (36) to reduce pumping while the positioning system (36) is moving from one target area (31) to the next target area (31) to form multiple vias in a substrate at a high throughput. Thus, the available UV power for via formation is higher even though the loading to the laser pumping diodes (14) remains the same as that currently available through conventional CW pumping with conventionally available laser pumping diodes (14). The quasi-CW-pumping current profile can be further modified to realize a preferred UV pulse amplitude profile.
    Type: Application
    Filed: September 11, 2002
    Publication date: March 13, 2003
    Inventors: Yunlong Sun, Richard S. Harris
  • Publication number: 20020185474
    Abstract: An EOM Q-switched CO2 laser produces bursts of laser pulses delivered at a high PRF such as 20-140 kHz and having a short high-power spike of about 80-150 ns followed by a lower-power tail of about 0.05-12.0 &mgr;s. The bursts and/or laser pulses can be shaped by controlling the RF pumping duty cycle, the delay between the onset of RF pumping and the initiation of Q-switching, the pulse repetition frequency, and/or the duration of the tail. The bursts of laser pulses can be adapted to facilitate machining of metal layers and/or layers containing materials having disparate vaporization temperatures and/or disparate melting points, such as FR4 or green ceramics.
    Type: Application
    Filed: May 9, 2002
    Publication date: December 12, 2002
    Inventors: Corey M. Dunsky, Hisashi Matsumoto, Richard S. Harris
  • Publication number: 20020149136
    Abstract: Patterns with feature sizes of less than 50 microns are rapidly formed directly in semiconductors, particularly silicon, using ultraviolet laser ablation. These patterns include very high aspect ratio cylindrical through-hole openings for integrated circuit connections; singulation of processed die contained on semiconductor wafers; and microtab cutting to separate microcircuit workpieces from a parent semiconductor wafer. Laser output pulses (32) from a diode-pumped, Q-switched frequency-tripled Nd:YAG, Nd:YVO4, or Nd:YLF is directed to the workpiece (12) with high speed precision using a compound beam positioner. The optical system produces a Gaussian spot size, or top hat beam profile, of about 10 microns. The pulse energy used for high-speed ablative processing of silicon using this focused spot size is greater than 200 &mgr;J per pulse at pulse repetition frequencies greater than 5 kHz and preferably above 15 kHz.
    Type: Application
    Filed: December 14, 2001
    Publication date: October 17, 2002
    Inventors: Brian W. Baird, Michael J. Wolfe, Richard S. Harris, Kevin P. Fahey, Lian-Cheng Zou, Thomas R. McNeil
  • Publication number: 20020125227
    Abstract: A quasi-CW diode- or lamp-pumped, A-O Q-switched solid-state UV laser system (10) synchronizes timing of the quasi-CW pumping with movement of the positioning system (36) to reduce pumping while the positioning system (36) is moving from one target area (31) to the next target area (31) to form multiple vias in a substrate at a high throughput. Thus, the available UV power for via formation is higher even though the average pumping power to the laser medium (16), and thermal loading of the laser pumping diodes (14), remains the same as that currently available through conventional CW pumping with conventionally available laser pumping diodes (14). The quasi-CW pumping current profile can be further modified to realize a preferred UV pulse amplitude profile.
    Type: Application
    Filed: March 12, 2002
    Publication date: September 12, 2002
    Inventors: Yunlong Sun, Richard S. Harris
  • Publication number: 20020100749
    Abstract: A uniform laser spot, such as from an imaged shaped Gaussian output (118) or a clipped Gaussian spot, that is less than 20 &mgr;m in diameter can be employed for both thin and thick film resistor trimming to substantially reduce microcracking. These spots can be generated in an ablative, nonthermal, UV laser wavelength to reduce the HAZ and/or shift in TCR.
    Type: Application
    Filed: January 31, 2002
    Publication date: August 1, 2002
    Inventors: Edward J. Swenson, Yunlong Sun, Richard S. Harris
  • Publication number: 20020003130
    Abstract: A burst (50) of ultrashort laser pulses (52) is employed to sever a conductive link (22) in a nonthermal manner and offers a wider processing window, eliminates undesirable HAZ effects, and achieves superior severed link quality. The duration of the burst (50) is preferably in the range of 10 ns to 500 ns; and the pulse width of each laser pulse (52) within the burst (50) is generally shorter than 25 ps, preferably shorter than or equal to 10 ps, and most preferably about 10 ps to 100 fs or shorter. The burst (50) can be treated as a single “pulse” by conventional laser positioning systems (62) to perform on-the-fly link removal without stopping whenever the laser system (60) fires a burst (50) of laser pulses (52) at each link (22). Conventional wavelengths or their harmonics can be employed.
    Type: Application
    Filed: January 9, 2001
    Publication date: January 10, 2002
    Inventors: Yunlong Sun, Edward J. Swenson, Richard S. Harris
  • Patent number: 6025256
    Abstract: The present invention provides a method and system for irradiating resist material from multiple target positions (150) on one or more IC chips (12) with individually directed laser output pulses (74, 94). In one embodiment, an IC (12), including one or more etch targets (104, 106) such as conductive links (72, 92), is coated with an etch protection layer (90) of photoresist material. Then, position data direct, toward multiple positions (150) on the photoresist material, individual laser output pulses (94) of predetermined parameters selected to expose the photoresist material. Because photoresist exposure requires less energy than link blowing, low-power UV lasers (120) can be employed, and their shorter wavelengths permit a smaller practical laser output spot size (98).
    Type: Grant
    Filed: July 22, 1997
    Date of Patent: February 15, 2000
    Assignee: Electro Scientific Industries, Inc.
    Inventors: Edward J. Swenson, Yunlong Sun, Richard S. Harris
  • Patent number: 4930901
    Abstract: A laser system operable in both a lead bonding mode and a lead severing mode. When in the lead bonding mode, the light-amplifying medium (38) of the laser is optically pumped by a lamp (45) to produce laser pulses within the laser cavity (36). The power supply (56) is rapidly switched to provide the bonding pulses (L.sub.b) at a high repetition rate. A Q-switch (46) is disposed within the cavity (36) to shape the laser output pulses (L.sub.b) with a leading power spike (S.sub.b) that is suitable for reducing the reflectivity of the lead (20) surface, thereby facilitating maximum absorption of the laser energy for the bonding operation. When in the severing mode, the light-amplifying medium (38) is continuously pumped and the Q-switch (46) is repetitively switched at a rate high enough to generate laser pulses (L.sub.s) suitable for severing the leads (20) without heating adjacent portions of the leads (20).
    Type: Grant
    Filed: May 26, 1989
    Date of Patent: June 5, 1990
    Assignee: Electro Scientific Industries, Inc.
    Inventors: Joel C. Johnson, Richard S. Harris