Patents by Inventor Richard W. Sexton

Richard W. Sexton has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8104170
    Abstract: A charge plate and a method for fabricating a charge plate for an ink jet printhead includes the steps of removing portions of conductive material from a dimensionally stable substrate with a coating of conductive material to form at least a first and second electrode on a first face with a first space between the first and second electrodes, removing portions of conductive material from the dimensionally stable substrate with a coating of conductive material to form a first electrode extension which engages the first electrode on the conductive charging face, and a second electrode extension which engages the second electrode on the conductive charging face, whereby the first and second electrode extensions are electrically isolated from each other, additionally forming a first space between the electrode extensions, which connects with the first space between the electrode extensions.
    Type: Grant
    Filed: January 28, 2008
    Date of Patent: January 31, 2012
    Assignee: Eastman Kodak Company
    Inventors: Brian G. Morris, Richard W. Sexton, Michael F. Baumer, James E. Harrison, Jr.
  • Patent number: 7850283
    Abstract: A liquid drop ejector is disclosed including a nozzle structure and a thermal actuator. The nozzle structure includes a nozzle and a wall. The nozzle includes an end and the wall extends from the end of the nozzle. The thermal actuator is associated with at least one of the nozzle and the wall, and is operable to add surface energy to at least one of the nozzle and the wall to cause a directional change in a liquid flowing through the nozzle structure.
    Type: Grant
    Filed: April 24, 2009
    Date of Patent: December 14, 2010
    Assignee: Eastman Kodak Company
    Inventors: Michael J. Piatt, Chang-Fang Hsu, Shan Guan, Richard W. Sexton, Michael F. Baumer
  • Publication number: 20100271436
    Abstract: A liquid drop ejector is disclosed including a nozzle structure and a thermal actuator. The nozzle structure includes a nozzle and a wall. The nozzle includes an end and the wall extends from the end of the nozzle. The thermal actuator is associated with at least one of the nozzle and the wall, and is operable to add surface energy to at least one of the nozzle and the wall to cause a directional change in a liquid flowing through the nozzle structure.
    Type: Application
    Filed: April 24, 2009
    Publication date: October 28, 2010
    Inventors: Michael J. Piatt, Chang-Fang Hsu, Shan Guan, Richard W. Sexton, Michael F. Baumer
  • Patent number: 7584539
    Abstract: A method of manufacturing an inkjet printer component and an inkjet printer component electropolishing device are provided. The method includes positioning an electrode in a fluid passageway of an inkjet printer component, the electrode including a conductive face and a nonconductive face; polishing a side of the fluid passageway by: biasing the nonconductive face of the electrode toward a side of the fluid passageway such that the conductive face of the electrode does not contact any portion of the fluid passageway; providing an electrolytic fluid to the fluid passageway of the inkjet printer component; and applying a voltage between the electrode and the inkjet printer component.
    Type: Grant
    Filed: October 16, 2006
    Date of Patent: September 8, 2009
    Assignee: Eastman Kodak Company
    Inventors: James E. Harrison, Francis T. Galbraith, Kevin P. Egan, Bruce A. Bowling, Richard W. Sexton
  • Patent number: 7568285
    Abstract: An orifice array plate and a charge plate for a continuous ink jet printer print head are integrally fabricated by providing an electrically non-conductive substrate; forming, on one side of the substrate, an orifice plate with an array of orifices; forming, on the other side of the substrate, a charge plate comprising a plurality of charge leads aligned with respective ones of the orifices; and removing at least that portion of the substrate that is between the orifices and the charge leads. The final produce includes an electrically non-conductive substrate; an orifice plate, including an array of orifices, on one side of the substrate; a charge plate, including a plurality of charge leads, on the other side of the substrate such that the charge leads are aligned with respective ones of the orifices; and a plurality of passages through the substrate, said passages extending between the orifices and the charge leads.
    Type: Grant
    Filed: May 11, 2006
    Date of Patent: August 4, 2009
    Assignee: Eastman Kodak Company
    Inventors: Richard W. Sexton, Michael J. Piatt, Robert J. Simon
  • Patent number: 7552534
    Abstract: An integrated orifice array plate and a charge plate is fabricated for a continuous ink jet print head by providing an electrically non-conductive orifice plate substrate having first and second opposed sides and an array of predetermined spaced-apart orifice positions. A plating seed layer is applied to the first of the opposed sides of the substrate, and an array of orifices is formed through the orifice plate substrate at the predetermined orifice positions. The orifices extend between the opposed sides. The plating seed layer is etched, leaving a portion of the plating seed layer adjacent to each of the predetermined orifice positions. A charge electrode is plated onto each of the portions of the plating seed layer.
    Type: Grant
    Filed: May 11, 2006
    Date of Patent: June 30, 2009
    Assignee: Eastman Kodak Company
    Inventors: Shan Guan, Michael F. Baumer, Richard W. Sexton, James E. Harrison, Jr.
  • Patent number: 7540589
    Abstract: An integrated orifice array plate and a charge plate are fabricated for a continuous ink jet print head by producing an orifice plate and a charge plate, and by bonding the two together. The orifice plate is produced by providing an electrically non-conductive orifice plate substrate, forming a recessed-surface trench of predetermined depth into one of two opposed sides of the orifice plate substrate, and forming an array of orifices through the orifice plate substrate from the recessed surface of the trench to the other of the two opposed sides wherein the orifices are spaced apart by a predetermined distance. The charge plate is produced by providing an electrically non-conductive orifice plate substrate of predetermined thickness, and forming a plurality of charging leads on one of two opposed sides of the orifice plate substrate. The charge leads are spaced apart by said predetermined distance.
    Type: Grant
    Filed: May 11, 2006
    Date of Patent: June 2, 2009
    Assignee: Eastman Kodak Company
    Inventors: Shan Guan, Michael F. Baumer, Richard W. Sexton, James E. Harrison, Jr.
  • Publication number: 20090126626
    Abstract: A method for fabricating an orifice plate with high density arrays of nozzles entails disposing a photoresist layer on a glass with a metalized layer forming a photomask blank and patterning the photomask blank with one or more openings. Second openings are formed by etching through the initial openings into the photoresist layer. The photoresist layer is removed and a second photoresist layer is added to the formed patterned structure forming a mandrel. One or more rings are patterned onto the mandrel. Each ring has an outer diameter larger than the diameter of the second openings and an inner diameter smaller than the diameter of the second openings. The mandrel with formed rings is plated with a metal forming an orifice plate.
    Type: Application
    Filed: January 14, 2009
    Publication date: May 21, 2009
    Inventors: Richard W. Sexton, James E. Harrison, JR., Jeanine A. Clark, Margene C. Howell
  • Patent number: 7501228
    Abstract: A method for fabricating an orifice plate with high density arrays of nozzles entails disposing a photoresist layer on a glass with a metalized layer forming a photomask blank and patterning the photomask blank with one or more openings. Second openings are formed by etching through the initial openings into the photoresist layer. The photoresist layer is removed and a second photoresist layer is added to the formed patterned structure forming a mandrel. One or more rings are patterned onto the mandrel. Each ring has an outer diameter larger than the diameter of the second openings and an inner diameter smaller than the diameter of the second openings. The mandrel with formed rings is plated with a metal forming an orifice plate. The orifice plate is separated from the patterned mandrel, forming an orifice plate with a high density array of nozzles.
    Type: Grant
    Filed: March 10, 2005
    Date of Patent: March 10, 2009
    Assignee: Eastman Kodak Company
    Inventors: Richard W. Sexton, James E. Harrison, Jr., Jeanine A. Clark, Margene C. Howell
  • Patent number: 7437820
    Abstract: A charge plate is fabricated for a continuous ink jet printer print head by applying an etch-stop to one of the opposed sides of an electrically non-conductive substrate. An array of charging channels are etched into the substrate through the etch-stop layer adjacent to predetermined orifice positions. The charging channels are passivated by depositing a dielectric insulator into the charging channels; and electrical leads are formed by coating the passivated charging channels with metal. A second etch-stop layer is applied to the other of the opposed sides of the substrate, and an array of orifices is formed through the orifice plate substrate at the predetermined orifice positions. The orifices extend between the opposed sides.
    Type: Grant
    Filed: May 11, 2006
    Date of Patent: October 21, 2008
    Assignee: Eastman Kodak Company
    Inventors: Richard W. Sexton, Shan Guan, Michael F. Baumer, James E. Harrison, Jr.
  • Publication number: 20080088681
    Abstract: A method of manufacturing an inkjet printer component and an inkjet printer component electropolishing device are provided. The method includes positioning an electrode in a fluid passageway of an inkjet printer component, the electrode including a conductive face and a nonconductive face; polishing a side of the fluid passageway by: biasing the nonconductive face of the electrode toward a side of the fluid passageway such that the conductive face of the electrode does not contact any portion of the fluid passageway; providing an electrolytic fluid to the fluid passageway of the inkjet printer component; and applying a voltage between the electrode and the inkjet printer component.
    Type: Application
    Filed: October 16, 2006
    Publication date: April 17, 2008
    Inventors: James E. Harrison, Francis T. Galbraith, Kevin P. Egan, Bruce A. Bowling, Richard W. Sexton
  • Publication number: 20080088673
    Abstract: A method of forming respective ink channels upon a substrate having respective actuators has a first layer of uncured photoresist material of a first type deposited onto a substrate incorporating the actuators. The first type of photoresist material is exposed to form cured and uncured areas wherein the uncured areas comprise the respective ink channels with respective orifices from which ink is to be ejected. A second layer of photoresist material of a second type is deposited over the cured and uncured areas of the first type of photoresist material and then exposed to provide uncured areas representing the respective orifices from which the ink is to be ejected and cured areas comprising channel walls for the respective ink channels. The second layer is developed with a first developer that is suitable for developing the second layer but not suitable for developing the first layer.
    Type: Application
    Filed: October 17, 2006
    Publication date: April 17, 2008
    Inventor: Richard W. Sexton
  • Patent number: 7341824
    Abstract: A system and method are provided for fabricating an orifice plate for use in an ink jet printing system. Initially, a substrate base is provided, and a controlled-release layer is applied to a surface of the substrate base. A conductive metal layer is adherently coated on the controlled-release layer. At least one dielectric peg is created on a portion of the conductive metal layer, and a nozzle layer is applied on the conductive metal layer to partially cover the dielectric peg. A trench is formed that covers a nozzles prior to formation of a reinforcing layer. The controlled-release layer is removed to separate the orifice plate from the substrate base. The conductive metal layer is selectively etched from the nozzle layer to complete fabricating the orifice plate.
    Type: Grant
    Filed: January 31, 2006
    Date of Patent: March 11, 2008
    Assignee: Eastman Kodak Company
    Inventor: Richard W. Sexton
  • Patent number: 7296350
    Abstract: A method for fabricating a drop generator with a uniquely formed nonconductive mandrel, which when encapsulated with electroplated metal, shapes and defines the internal ink channel entails identifying a non-conductive dimensionally stable structure with a shape adapted to define a fluid cavity for the drop generator for an ink jet printer. The ends of the structure are covered with caps. A conductive base is mounted to each structure. Metal from the conductive base is electroformed onto the structure to a thickness at least equivalent to a desired outer dimension. The caps are removed and the structure is removed, thereby leaving a drop generator with a channel adapted to receive fluid and a slot adapted to communicate fluid from the channel to the orifice plate.
    Type: Grant
    Filed: March 14, 2005
    Date of Patent: November 20, 2007
    Assignee: Eastman Kodak Company
    Inventors: Richard W. Sexton, James E. Harrison, Jr.
  • Patent number: 7204020
    Abstract: A method for fabricating a charge plate for an ink jet printhead entails removing portions of conductive material from a dimensionally stable dielectric substrate with a coating of conductive material to form at least a first and second electrode on a first face with a first space between the first and second electrodes, removing portions of conductive material from the dimensionally stable dielectric substrate with a coating of conductive material to form a first electrode extension that engages the first electrode on the conductive charging face, and a second electrode extension that engages the second electrode on the conductive charging face, whereby the first and second electrode extensions are electrically isolated from each other, additionally forming a first space between the electrode extensions, which connects with the first space between the electrode extensions.
    Type: Grant
    Filed: October 15, 2004
    Date of Patent: April 17, 2007
    Assignee: Eastman Kodak Company
    Inventors: Brian G. Morris, Richard W. Sexton, Michael F. Baumer, James E. Harrison, Jr.
  • Publication number: 20030143492
    Abstract: A system and method are provided for fabricating an orifice plate for use in an ink jet printing system. Initially, a substrate base is provided, and a controlled-release layer is applied to a surface of the substrate base. A conductive metal layer is adherently coated on the controlled-release layer. At least one dielectric peg is created on a portion of the conductive metal layer, and a nozzle layer is applied on the conductive metal layer to partially cover the dielectric peg. Photolithography is used to define a trench that covers the nozzles prior to formation of a second reinforcing layer. The controlled-release layer is removed to separate the orifice plate from the substrate base. The conductive metal layer is selectively etched from the nozzle layer to produce a completed multi-layer orifice plate.
    Type: Application
    Filed: January 31, 2002
    Publication date: July 31, 2003
    Applicant: Scitex Digital Printing, Inc.
    Inventor: Richard W. Sexton
  • Patent number: 6543885
    Abstract: Metallic bumps are formed for electrical interconnection between the charge plate and the charge drive electronics. This is achieved by having improved electrical connection between an ink jet charge plate and associated charge leads is promoted. This is achieved by integrating the termination pads, electrical transmission lines, and charging leads. The termination bumps are formed as integral parts of the charge leads and are connected directly to the charge driver board electronics by pressure contact. The bumps can be formed by mechanically indenting the termination pads or by using an interposer that has raised metallic pads aligned to the integral nickel pads and the charge driver circuitry board. First, a mask is aligned to permit additive formation of the pads, conductors, and charge leads. Then the nickel circuitry thus formed is made into a rigid charge plate and an integrated flexible section having contact bumps.
    Type: Grant
    Filed: June 27, 2001
    Date of Patent: April 8, 2003
    Assignee: Scitex Digital Printing, Inc.
    Inventors: Surinder K. Bahl, James E. Harrison, Jr., Richard W. Sexton
  • Publication number: 20030001932
    Abstract: Metallic bumps are formed for electrical interconnection between the charge plate and the charge drive electronics. This is achieved by having improved electrical connection between an ink jet charge plate and associated charge leads is promoted. This is achieved by integrating the termination pads, electrical transmission lines, and charging leads. The termination bumps are formed as integral parts of the charge leads and are connected directly to the charge driver board electronics by pressure contact. The bumps can be formed by mechanically indenting the termination pads or by using an interposer that has raised metallic pads aligned to the integral nickel pads and the charge driver circuitry board. First, a mask is aligned to permit additive formation of the pads, conductors, and charge leads. Then the nickel circuitry thus formed is made into a rigid charge plate and an integrated flexible section having contact bumps.
    Type: Application
    Filed: June 27, 2001
    Publication date: January 2, 2003
    Applicant: Scitex Digital Printing, Inc.
    Inventors: Surinder K. Bahl, James E. Harrison, Richard W. Sexton
  • Patent number: 6350361
    Abstract: Precise control of deposition or etching of thin films on a transparent substrate is particularly useful for electroformation of nozzles and formation control. A computer based measuring system is used to measure, in real time, a test feature such as one such nozzle. The rate of material deposition and removal is controlled based on the measured value of the test feature. In particular, a video camera and microscope are used to produce images of the test feature. During the electroplating process, metal is plated onto a conductive layer, and as the plated metal layer grows up from the conductive layer of the mandrel, the plated layer can also encroach on transparent openings produced by the absence of the mandrel conductive layer. The amount of encroachment on the transparent openings is directly related to the thickness of the plated layer.
    Type: Grant
    Filed: February 17, 1999
    Date of Patent: February 26, 2002
    Assignee: Scitex Digital Printing, Inc.
    Inventors: Richard W. Sexton, James E. Harrison, Jr., Randy L. Fagerquist
  • Patent number: 6274057
    Abstract: Metallic bumps are formed for electrical interconnection between the charge plate and the charge drive electronics. This is achieved by having improved electrical connection between an ink jet charge plate and associated charge leads is promoted. First, a mask is aligned to permit plating of an etch mask on the charge plate coupon on the side opposite the charge plate circuitry, so as to place masked regions directly across the coupon from the contact pads of the charge plate circuitry. All the copper alloy charge plate coupon is then etched away except the small portions between the termination and the etch mask. The bump thus formed is used to provide a high pressure point electrical connection to the charge plate.
    Type: Grant
    Filed: February 17, 1999
    Date of Patent: August 14, 2001
    Assignee: Scitex Digital Printing, Inc.
    Inventors: Richard W. Sexton, James E. Harrison, Jr.