Patents by Inventor Rick Tabor

Rick Tabor has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220133596
    Abstract: A pill swallowing device comprising a deformable reservoir for holding an edible liquid; a liquid refilling port attached to the deformable reservoir; a pill transit port for loading and discharging pills attached to the deformable reservoir; and a cap detachably connected to the pill transit port, the cap comprising a pill-positioning insert that engages the pill, that projects into the deformable reservoir for directing the pill inside the reservoir.
    Type: Application
    Filed: November 3, 2021
    Publication date: May 5, 2022
    Inventor: Rick TABOR
  • Patent number: 11299614
    Abstract: Maleate polyester polyols and coatings made from the polyols are disclosed. The polyester polyols comprise recurring units of (a) a digested thermoplastic polyester or an aromatic dicarboxylate source; (b) a diol; (c) 5 to 95 mole % of an ?,?-unsaturated monomer; and (d) 5 to 95 mole % of adipic acid, succinic acid, or a mixture thereof, where the mole % ranges for (c) and (d) are based on the combined molar amounts of (c) and (d). The polyols have hydroxyl numbers within the range of 25 to 450 mg KOH/g, an average of 0.5 to 2.5 reactive unsaturation sites per molecule, and a viscosity less than 1500 cP at 75° C. The polyols are thermally curable or energy-curable. Coatings made from the maleate polyester polyols are also described. Traditional coatings based on polyisocyanates and/or (meth)acrylates can be made, in some cases with improved properties and reduced reliance on the acrylate or isocyanate-based components.
    Type: Grant
    Filed: August 22, 2019
    Date of Patent: April 12, 2022
    Assignee: CARLISLE CONSTRUCTION MATERIALS, LLC
    Inventors: Matthew Thomas Brown, Michelle Samson, Gary Spilman, Rick Tabor, Kevin Anthony Rogers
  • Patent number: 11142729
    Abstract: Detergents useful for cold-water cleaning and mid-chain headgroup and alkylene-bridged surfactants useful therein are disclosed. The mid-chain headgroup surfactant has a C14-C30 alkyl chain and a polar group bonded to a central zone carbon of the alkyl chain. The alkylene-bridged surfactant has a C12-C18 alkyl chain, a polar group, and a C1-C2 alkylene group bonded to the polar group and a central zone carbon of the C12-C18 alkyl chain. Preferred surfactants in these classes are alcohol sulfates, alcohol ethoxylates, ether sulfates, sulfonates, arylsulfonates, alcohol phosphates, amine oxides, quaterniums, betaines, and sulfobetaines. Surprisingly, detergents formulated with the surfactants provide outstanding cold-water performance in removing greasy stains such as bacon grease, butter, cooked beef fat, or beef tallow from soiled articles.
    Type: Grant
    Filed: August 9, 2019
    Date of Patent: October 12, 2021
    Assignee: STEPAN COMPANY
    Inventors: Brian Holland, Randal J. Bernhardt, Branko Sajic, Rick Tabor
  • Patent number: 10934390
    Abstract: Polyester polyols, processes for making them, and applications for the polyols are disclosed. Some of the polyols comprise recurring units from a digested thermoplastic polyester (e.g., recycled polyethylene terephthalate), a diol, an optional hydrophobe, and a clarifier. The clarifier, which in some cases is a bisphenol, bisphenol alkoxylate, bisphenol polycarbonate, sulfonyl diphenol, or sulfonyl diphenol alkoxylate, helps the polyol remain clear for weeks or months after its preparation. In some aspects, the clarifier is a monophenol, bisphenol, or poly-phenol having two or more phenylene rings wherein at least two of the phenylene rings lack a common molecular axis. The clarifier may also be an alkylated phenol, an epoxy resin, an epoxy novolac resin, a diphenylmethane, or a tris(aryloxy)phosphate.
    Type: Grant
    Filed: October 11, 2017
    Date of Patent: March 2, 2021
    Assignee: RESINATE MATERIALS GROUP, INC.
    Inventors: Rick Tabor, Eric D. Vrabel
  • Patent number: 10745585
    Abstract: The present invention relates to coatings, particularly high performance coatings, containing a polyester polyol comprising recurring units derived from a polyacid source, poly(bisphenol-A carbonate) (PBAC), and a glycol. The PBAC is preferably recycled poly(bisphenol-A carbonate) (rPBAC). These coatings provide improved salt spray and stain resistance along with a variety of other coating performance attributes. The polyols can contain a significant recycle and biobased content, making them sustainable alternatives to petroleum based polyols.
    Type: Grant
    Filed: September 29, 2016
    Date of Patent: August 18, 2020
    Assignee: RESINATE MATERIALS GROUP, INC.
    Inventors: Gary Spilman, Michael Christy, Eric Vrabel, Gage Fryz, Rick Tabor, Brian T. Comstock-Reid
  • Patent number: 10662364
    Abstract: A drilling fluid comprising a carrier fluid, an aromatic polyester polyol and an additive selected from a thickener, a wetting agent, an emulsifier, a weighting agent, a pH control agent, a lubricant or mixtures thereof.
    Type: Grant
    Filed: March 16, 2016
    Date of Patent: May 26, 2020
    Assignee: RESINATE MATERIALS GROUP, INC.
    Inventors: Shakti L. Mukerjee, Kevin Anthony Rogers, Rick Tabor
  • Patent number: 10611879
    Abstract: Polyester polyols made from thermoplastic polyesters are disclosed. The polyols can be made by heating a thermoplastic polyester such as virgin PET, recycled PET, or mixtures thereof, with a glycol to give a digested intermediate, which is then condensed with a dimer fatty acid to give the polyol. The invention includes a polyester polyol comprising recurring units of a glycol-digested thermoplastic polyester and a dimer fatty acid. The polyester polyol can also be made in a single step by reacting the thermoplastic polyester, glycol, and dimer acid under conditions effective to produce the polyol. High-recycle-content polyols having desirable properties and attributes for formulating polyurethane products, including aqueous polyurethane dispersions, can be made. The polyols provide a sustainable alternative to bio- or petrochemical-based polyols.
    Type: Grant
    Filed: April 15, 2019
    Date of Patent: April 7, 2020
    Assignee: RESINATE MATERIALS GROUP, INC.
    Inventors: Shakti L. Mukerjee, Rick Tabor, Adam William Emerson, Kevin Anthony Rogers, Eric D. Vrabel, Matthew T. Brown, Matthew J. Beatty, Jack Rogers Kovsky, Michael D. Kellerman, Michael Robert Christy
  • Publication number: 20200002524
    Abstract: Maleate polyester polyols and coatings made from the polyols are disclosed. The polyester polyols comprise recurring units of (a) a digested thermoplastic polyester or an aromatic dicarboxylate source; (b) a diol; (c) 5 to 95 mole % of an ?,?-unsaturated monomer; and (d) 5 to 95 mole % of adipic acid, succinic acid, or a mixture thereof, where the mole % ranges for (c) and (d) are based on the combined molar amounts of (c) and (d). The polyols have hydroxyl numbers within the range of 25 to 450 mg KOH/g, an average of 0.5 to 2.5 reactive unsaturation sites per molecule, and a viscosity less than 1500 cP at 75° C. The polyols are thermally curable or energy-curable. Coatings made from the maleate polyester polyols are also described. Traditional coatings based on polyisocyanates and/or (meth)acrylates can be made, in some cases with improved properties and reduced reliance on the acrylate or isocyanate-based components.
    Type: Application
    Filed: August 22, 2019
    Publication date: January 2, 2020
    Inventors: Matthew Thomas Brown, Michelle Samson, Gary Spilman, Rick Tabor, Kevin Anthony Rogers
  • Publication number: 20190359915
    Abstract: Detergents useful for cold-water cleaning and mid-chain headgroup and alkylene-bridged surfactants useful therein are disclosed. The mid-chain headgroup surfactant has a C14-C30 alkyl chain and a polar group bonded to a central zone carbon of the alkyl chain. The alkylene-bridged surfactant has a C12-C18 alkyl chain, a polar group, and a C1-C2 alkylene group bonded to the polar group and a central zone carbon of the C12-C18 alkyl chain. Preferred surfactants in these classes are alcohol sulfates, alcohol ethoxylates, ether sulfates, sulfonates, arylsulfonates, alcohol phosphates, amine oxides, quaterniums, betaines, and sulfobetaines. Surprisingly, detergents formulated with the surfactants provide outstanding cold-water performance in removing greasy stains such as bacon grease, butter, cooked beef fat, or beef tallow from soiled articles.
    Type: Application
    Filed: August 9, 2019
    Publication date: November 28, 2019
    Inventors: Brian Holland, Randal J. Bernhardt, Branko Sajic, Rick Tabor
  • Patent number: 10421930
    Abstract: Detergents useful for cold-water cleaning and mid-chain headgroup and alkylene-bridged surfactants useful therein are disclosed. The mid-chain headgroup surfactant has a C14-C30 alkyl chain and a polar group bonded to a central zone carbon of the alkyl chain. The alkylene-bridged surfactant has a C12-C18 alkyl chain, a polar group, and a C1-C2 alkylene group bonded to the polar group and a central zone carbon of the C12-C18 alkyl chain. Preferred surfactants in these classes are alcohol sulfates, alcohol ethoxylates, ether sulfates, sulfonates, arylsulfonates, alcohol phosphates, amine oxides, quaterniums, betaines, and sulfobetaines. Surprisingly, detergents formulated with the surfactants provide outstanding cold-water performance in removing greasy stains such as bacon grease, butter, cooked beef fat, or beef tallow from soiled articles.
    Type: Grant
    Filed: November 17, 2016
    Date of Patent: September 24, 2019
    Assignee: STEPHAN COMPANY
    Inventors: Brian Holland, Randal J. Bernhardt, Branko Sajic, Rick Tabor
  • Patent number: 10414859
    Abstract: Polyester polyols made from thermoplastic polyesters are disclosed. The polyols are reaction products of a thermoplastic polyester, a glycol, and a hydrophobe selected from ricinoleic acid, ethoxylated castor oil, saturated or unsaturated C9-C18 dicarboxylic acids, tung oil, soybean oil, sunflower oil, cardanol-based products, recycled cooking oil, isostearyl alcohol, hydroxy-functional materials derived from epoxidized, ozonized, or hydroformylated fatty esters or fatty acids, and mixtures thereof. In one process, the polyols are made by reacting the thermoplastic polyester with a glycol to give a digested intermediate, which is then reacted with the hydrophobe. In another process, the thermoplastic polyester, glycol, and hydrophobe are combined and reacted in a single step. These hydrophobes facilitate the production from recycled thermoplastics of polyols that have good transparency and little or no particulate settling or phase separation.
    Type: Grant
    Filed: October 19, 2015
    Date of Patent: September 17, 2019
    Assignee: RESINATE MATERIALS GROUP, INC.
    Inventors: Rick Tabor, Kevin Anthony Rogers, Eric D Vrabel, Matthew James Beatty, Woo-Sung Bae, Shakti L Mukerjee
  • Publication number: 20190241702
    Abstract: Polyester polyols made from thermoplastic polyesters are disclosed. The polyols can be made by heating a thermoplastic polyester such as virgin PET, recycled PET, or mixtures thereof, with a glycol to give a digested intermediate, which is then condensed with a dimer fatty acid to give the polyol. The invention includes a polyester polyol comprising recurring units of a glycol-digested thermoplastic polyester and a dimer fatty acid. The polyester polyol can also be made in a single step by reacting the thermoplastic polyester, glycol, and dimer acid under conditions effective to produce the polyol. High-recycle-content polyols having desirable properties and attributes for formulating polyurethane products, including aqueous polyurethane dispersions, can be made. The polyols provide a sustainable alternative to bio- or petrochemical-based polyols.
    Type: Application
    Filed: April 15, 2019
    Publication date: August 8, 2019
    Inventors: Shakti L. Mukerjee, Rick Tabor, Adam William Emerson, Kevin Anthony Rogers, Eric D. Vrabel, Matthew T. Brown, Matthew J. Beatty, Jack Rogers Kovsky, Michael D. Kellerman, Michael Robert Christy
  • Publication number: 20190225734
    Abstract: Polyester polyol blends are disclosed. The blends comprise 70 to 99 wt. % of an aromatic or aliphatic polyester polyol, 0.1 to 10 wt. % of a sugar having an average hydroxyl functionality of 4 to 6 and a melting point less than 125° C., and 1 to 20 wt. % of a glycidyl compound having a boiling point of at least 200° C. at 760 mm Hg. The polyester polyol can be made by glycolysis of a recycled thermoplastic polymer, such as polyethylene terephthalate. The polyol blends are useful for the production of polymeric coatings and other products. Coatings made from blends of the polyester polyols and 0.1 to 10 wt. % of a sugar are also described.
    Type: Application
    Filed: June 23, 2017
    Publication date: July 25, 2019
    Inventors: Rick Tabor, Matthew J. Beatty, Gary E. Spilman, Shakti L. Mukerjee
  • Publication number: 20190225835
    Abstract: The present invention relates to polyol blends containing a polyol and a polyphenol alkoxylate, i.e. an alkoxylated polyphenol, and coatings prepared from these blends. The polyol blends have the advantage of a low residual polyphenol content and have desirable viscosity characteristics without the need for diluents or solvents which could result in unwanted VOC emissions. In another aspect of the invention, polyester polyols are prepared using polyphenol alkoxyiates. Coatings prepared using these polyol compositions have improved salt spray corrosion resistance, along with a variety of other excellent coating performance properties. Also, the polyols used herein can contain a significant recycle and biorenewable content, making these blends and coatings sustainable alternatives to petroleum based polyol products.
    Type: Application
    Filed: September 12, 2017
    Publication date: July 25, 2019
    Inventors: Gary E. Spilman, Michael R. Christy, Rick Tabor, Brian T. Comstock-Reid, Jack R. Kovsky, Michelle Marie Samson
  • Patent number: 10344121
    Abstract: Polyester polyols made from thermoplastic polyesters are disclosed. The polyols can be made by heating a thermoplastic polyester such as virgin PET, recycled PET, or mixtures thereof, with a glycol to give a digested intermediate, which is then condensed with a dimer fatty acid to give the polyol. The invention includes a polyester polyol comprising recurring units of a glycol-digested thermoplastic polyester and a dimer fatty acid. The polyester polyol can also be made in a single step by reacting the thermoplastic polyester, glycol, and dimer acid under conditions effective to produce the polyol. High-recycle-content polyols having desirable properties and attributes for formulating polyurethane products, including aqueous polyurethane dispersions, can be made. The polyols provide a sustainable alternative to bio- or petrochemical-based polyols.
    Type: Grant
    Filed: November 7, 2017
    Date of Patent: July 9, 2019
    Assignee: RESINATE MATERIALS GROUP, INC.
    Inventors: Shakti L. Mukerjee, Rick Tabor, Adam William Emerson, Kevin Anthony Rogers, Eric D. Vrabel, Matthew T. Brown, Matthew J. Beatty, Jack Rogers Kovsky, Michael D. Kellerman, Michael Robert Christy
  • Patent number: 10336958
    Abstract: Sustainable lubricant compositions made from recycled thermoplastic polyesters and other reclaimed or biorenewable reactants and a method of formulating them are disclosed. The lubricant compositions comprise a polyester base oil, which incorporates recurring units from a digested thermoplastic polyester, a low-molecular-weight polyol, and C8-C24 fatty acid. The base oil has a number-average molecular weight within the range of 300 to 5000 g/mol, a hydroxyl value less than 50 mg KOH/g, and a viscosity at 40° C. less than 5000 cSt. Some of the lubricant compositions comprise the polyester base oil and one or more additives including anti-wear agents, corrosion inhibitors, antioxidants, thickeners, detergents, and the like.
    Type: Grant
    Filed: August 25, 2017
    Date of Patent: July 2, 2019
    Assignee: RESINATE MATERIALS GROUP, INC.
    Inventors: Woo-Sung Bae, Jack R. Kovsky, Rick Tabor
  • Patent number: 10336925
    Abstract: Semi-crystalline polyester polyols and their use in reactive hot-melt adhesives are disclosed. The polyols comprise recurring units of a C2-C10 aliphatic diol, a C8-C24 aliphatic dicarboxylic acid, and 1 to 20 wt. % of an aromatic dicarboxylic acid source, a polycarbonate, or a combination thereof. The polyols have a hydroxyl number within the range of 14 to 112 mg KOH/g. Reactive hot-melt adhesives from the polyols and composite structures produced using the adhesives are also disclosed. A minor proportion of aromatic dicarboxylic acid, polycarbonate content in the polyester polyol surprisingly improves the properties of reactive hot-melt adhesives when compared with a commercial hot-melt adhesive or an adhesive formulated using an all-aliphatic polyester polyol. The adhesives are useful for bonding a wide variety of substrates, including paper, wood, glass, ceramics, plastics, and metals.
    Type: Grant
    Filed: September 6, 2016
    Date of Patent: July 2, 2019
    Assignee: RESINATE MATERIALS GROUP, INC.
    Inventors: Woo-Sung Bae, Kevin Rogers, Michael Christy, Rick Tabor
  • Publication number: 20190169397
    Abstract: A process for producing a polyester polyol comprising reacting a recycle stream selected from recycled PET carpet, carpet fiber, containers, textiles, articles or mixtures thereof, with a glycol in a reactor, thereby forming a digested product stream comprising polyols, and an undigested stream; and then reacting the digested product stream with a hydrophobe selected from dimer fatty acids, trimer fatty acids, oleic acid, ricinoleic acid, tung oil, corn oil, canola oil, soybean oil, sunflower oil, bacterial oil, yeast oil, algae oil, castor oil, triglycerides or alkyl carboxylate esters having saturated or unsaturated C6-C36 fatty acid units, saturated or unsaturated C6-C36 fatty acids, alkoxylated castor oil, saturated or unsaturated C9-C18 dicarboxylic acids or diols, cardanol-based products, recycled cooking oil, branched or linear C6-C36 fatty alcohols, hydroxy-functional materials derived from epoxidized, ozonized, or hydroformylated fatty esters or acids, or mixtures thereof.
    Type: Application
    Filed: February 11, 2019
    Publication date: June 6, 2019
    Inventors: Rick Tabor, Shakti L. Mukerjee, Kevin Anthony Rogers, Adam W. Emerson, Eric David Vrabel, Brian Douglas Phillips
  • Patent number: 10308785
    Abstract: A process for producing a polyester polyol comprising reacting a recycle stream selected from recycled PET carpet, carpet fiber, containers, textiles, articles or mixtures thereof, with a glycol in a reactor, thereby forming a digested product stream comprising polyols, and an undigested stream; and then reacting the digested product stream with a hydrophobe selected from dimer fatty acids, trimer fatty acids, oleic acid, ricinoleic acid, tung oil, corn oil, canola oil, soybean oil, sunflower oil, bacterial oil, yeast oil, algae oil, castor oil, triglycerides or alkyl carboxylate esters having saturated or unsaturated C6-C36 fatty acid units, saturated or unsaturated C6-C36 fatty acids, alkoxylated castor oil, saturated or unsaturated C9-C18 dicarboxylic acids or diols, cardanol-based products, recycled cooking oil, branched or linear C6-C36 fatty alcohols, hydroxy-functional materials derived from epoxidized, ozonized, or hydroformylated fatty esters or acids, or mixtures thereof.
    Type: Grant
    Filed: April 26, 2017
    Date of Patent: June 4, 2019
    Assignee: RESINATE MATERIALS GROUP, INC.
    Inventors: Rick Tabor, Shakti L. Mukerjee, Kevin Anthony Rogers, Eric David Vrabel, Brian Chermside, Adam W. Emerson, Brian Douglas Phillips
  • Patent number: 10280277
    Abstract: A process for producing a polyester polyol comprising reacting a recycle stream selected from recycled PET carpet, carpet fiber, containers, textiles, articles or mixtures thereof, with a glycol in a reactor, thereby forming a digested product stream comprising polyols, and an undigested stream; and then reacting the digested product stream with a hydrophobe selected from dimer fatty acids, trimer fatty acids, oleic acid, ricinoleic acid, tung oil, corn oil, canola oil, soybean oil, sunflower oil, bacterial oil, yeast oil, algae oil, castor oil, triglycerides or alkyl carboxylate esters having saturated or unsaturated C6-C36 fatty acid units, saturated or unsaturated C6-C36 fatty acids, alkoxylated castor oil, saturated or unsaturated C9-C18 dicarboxylic acids or diols, cardanol-based products, recycled cooking oil, branched or linear C6-C36 fatty alcohols, hydroxy-functional materials derived from epoxidized, ozonized, or hydroformylated fatty esters or acids, or mixtures thereof.
    Type: Grant
    Filed: May 23, 2017
    Date of Patent: May 7, 2019
    Assignee: RESINATE MATERIALS GROUP, INC.
    Inventors: Rick Tabor, Shakti L. Mukerjee, Kevin Anthony Rogers, Adam W. Emerson, Eric David Vrabel, Brian Douglas Phillips