Patents by Inventor Rick Tabor

Rick Tabor has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10273332
    Abstract: Polyester polyols made from recycled polyethylene terephthalate (rPET) and processes for making them are disclosed. The rPET is heated with a C3-C10 glycol reactant to give a digested intermediate comprising glycols and a terephthalate component, which comprises 45 to 70 wt. % of bis(hydroxyalkyl)terephthalates, and preferably lesser amounts of terephthalate dimers and trimers. Treatment of the digested intermediate with activated carbon gives a polyester polyol having a color index less than 20. The polyols have desirable hydroxyl numbers, viscosities, appearance, and other attributes for formulating polyurethane products and are a sustainable alternative to bio- or petrochemical-based polyols.
    Type: Grant
    Filed: April 30, 2015
    Date of Patent: April 30, 2019
    Assignee: RESINATE MATERIALS GROUP, INC.
    Inventors: Rick Tabor, Eric D. Vrabel, Kevin Anthony Rogers, Shakti L. Mukerjee, Matthew J. Beatty, Adam William Emerson, Matthew T. Brown, Jack Rogers Kovsky, Michael D. Kellerman, Michael Robert Christy
  • Publication number: 20190010303
    Abstract: A process for producing a polyester polyol comprising reacting a recycle stream selected from recycled PET carpet, carpet fiber, containers, textiles, articles or mixtures thereof, with a glycol in a reactor, thereby forming a digested product stream comprising polyols, and an undigested stream; and then reacting the digested product stream with a hydrophobe selected from dimer fatty acids, trimer fatty acids, oleic acid, ricinoleic acid, tung oil, corn oil, canola oil, soybean oil, sunflower oil, bacterial oil, yeast oil, algae oil, castor oil, triglycerides or alkyl carboxylate esters having saturated or unsaturated C6-C36 fatty acid units, saturated or unsaturated C6-C36 fatty acids, alkoxylated castor oil, saturated or unsaturated C9-C18 dicarboxylic acids or diols, cardanol-based products, recycled cooking oil, branched or linear C6-C36 fatty alcohols, hydroxy-functional materials derived from epoxidized, ozonized, or hydroformylated fatty esters or acids, or mixtures thereof.
    Type: Application
    Filed: September 11, 2018
    Publication date: January 10, 2019
    Inventors: Rick Tabor, Shakti L. Mukerjee, Kevin Rogers, Eric David Vrabel, Adam W. Emerson, Brian Douglas Phillips
  • Patent number: 10155837
    Abstract: Polyester polyol compositions are disclosed. The polyol compositions, which comprise recurring units of a digested thermoplastic polyester, a glycol, and castor oil, ricinoleic acid, or a mixture of castor oil and ricinoleic acid, have hydroxyl numbers within the range of 20 to 150 mg KOH/g and average hydroxyl functionalities within the range of 2.5 to 3.5. The invention includes flexible polyurethane foams that incorporate the polyester polyols. Sustainable polyester polyols made completely or in substantial part from recycled, post-industrial, and/or biorenewable materials such as polyethylene terephthalate, glycols, and castor oil are provided. The polyols have desirable properties for formulating flexible polyurethane foams and other products.
    Type: Grant
    Filed: August 1, 2017
    Date of Patent: December 18, 2018
    Assignee: RESINATE MATERIALS GROUP, INC.
    Inventors: Matt Brown, Michelle Samson, Jack R. Kovsky, Woo-Sung Bae, Shakti L. Mukerjee, Rick Tabor
  • Patent number: 10119006
    Abstract: A process for producing a polyester polyol comprising reacting a recycle stream selected from recycled PET carpet, carpet fiber, containers, textiles, articles or mixtures thereof, with a glycol in a reactor, thereby forming a digested product stream comprising polyols, and an undigested stream; and then reacting the digested product stream with a hydrophobe selected from dimer fatty acids, trimer fatty acids, oleic acid, ricinoleic acid, tung oil, corn oil, canola oil, soybean oil, sunflower oil, bacterial oil, yeast oil, algae oil, castor oil, triglycerides or alkyl carboxylate esters having saturated or unsaturated C6-C36 fatty acid units, saturated or unsaturated C6-C36 fatty acids, alkoxylated castor oil, saturated or unsaturated C9-C18 dicarboxylic acids or diols, cardanol-based products, recycled cooking oil, branched or linear C6-C36 fatty alcohols, hydroxy-functional materials derived from epoxidized, ozonized, or hydroformylated fatty esters or acids, or mixtures thereof.
    Type: Grant
    Filed: April 15, 2016
    Date of Patent: November 6, 2018
    Inventors: Rick Tabor, Shakti L. Mukerjee, Kevin Rogers, Adam W. Emerson, Brian Douglas Phillips
  • Publication number: 20180237573
    Abstract: The present invention relates to polyester polyols made from aromatic polyacid sources such as thermoplastic polyesters. The polyols can be made by heating a thermoplastic polyester such as virgin polyethylene terephthalate, recycled polyethylene terephthalate, or mixtures thereof, with a glycol to give a digested intermediate which is then reacted with a digestible polymer, which can be obtained from various recycle waste streams. The polyester polyols comprise a glycol-digested polyacid source and a further digestible polymer. The polyester polyols provide a sustainable alternative to petrochemical or biochemical based polyester polyols.
    Type: Application
    Filed: April 23, 2018
    Publication date: August 23, 2018
    Inventors: Rick Tabor, Eric David Vrabel, Matthew J. Beatty, Gary E. Spilman, Kevin Anthony Rogers, Michael Robert Christy, Matthew Thomas Brown, Jack Rogers Kovsky, Woo-Sung Bae, Shakti L. Mukerjee
  • Patent number: 10040899
    Abstract: Cycloaliphatic polyester polyols and processes for making them from thermoplastic polyesters are disclosed. One process comprises heating a thermoplastic polyester with a glycol to give a digested intermediate and hydrogenating aromatic rings in the digested intermediate to produce the cycloaliphatic polyester polyol. Optionally, the digested intermediate is reacted with a hydrophobe to give a modified polyol prior to hydrogenation, and the modified polyol is hydrogenated to give the cycloaliphatic polyester polyol. The high-recycle-content cycloaliphatic polyester polyols have desirable attributes for formulating polyurethane dispersions, two-component polyurethane coatings, mono- or poly(meth)acrylates, polyisocyanurates, flexible and rigid foams, coatings, adhesives, sealants, and elastomers, and they provide a sustainable alternative to petrochemical-based polyols.
    Type: Grant
    Filed: November 10, 2016
    Date of Patent: August 7, 2018
    Assignee: Resinate Materials Group, Inc.
    Inventors: Rick Tabor, Eric David Vrabel, Matthew Beatty
  • Patent number: 10030099
    Abstract: The present invention relates to the chemical digestion of keratin, such as avian feathers and wool. The digestion product is made by heating the feathers or wool with a solvent selected from glycols, alkanolamines, polyamines, and combinations thereof. The resulting digested keratin product is a keratin-derived polyol useful for making polymeric materials such as polyurethanes. The digestion products provide a sustainable alternative to petrochemical based intermediates.
    Type: Grant
    Filed: March 30, 2016
    Date of Patent: July 24, 2018
    Assignee: Resinate Materials Group, Inc.
    Inventors: Rick Tabor, Eric David Vrabel, Matthew J Beatty, Jack Rogers Kovsky
  • Patent number: 9951171
    Abstract: The present invention relates to polyester polyols made from aromatic polyacid sources such as thermoplastic polyesters. The polyols can be made by heating a thermoplastic polyester such as virgin polyethylene terephthalate, recycled polyethylene terephthalate, or mixtures thereof, with a glycol to give a digested intermediate which is then reacted with a digestible polymer, which can be obtained from various recycle waste streams. The polyester polyols comprise a glycol-digested polyacid source and a further digestible polymer. The polyester polyols provide a sustainable alternative to petrochemical or biochemical based polyester polyols.
    Type: Grant
    Filed: October 14, 2015
    Date of Patent: April 24, 2018
    Assignee: Resinate Materials Group, Inc.
    Inventors: Rick Tabor, Eric David Vrabel, Matthew J Beatty, Gary E. Spilman, Kevin Anthony Rogers, Michael Robert Christy, Matthew Thomas Brown, Jack Rogers Kovsky, Woo-Sung Bae, Shakti L Mukerjee
  • Publication number: 20180066174
    Abstract: A drilling fluid comprising a carrier fluid, an aromatic polyester polyol and an additive selected from a thickener, a wetting agent, an emulsifier, a weighting agent, a pH control agent, a lubricant or mixtures thereof.
    Type: Application
    Filed: March 16, 2016
    Publication date: March 8, 2018
    Inventors: Shakti L. Mukerjee, Kevin Anthony Rogers, Rick Tabor
  • Publication number: 20180066106
    Abstract: Polyester polyols made from thermoplastic polyesters are disclosed. The polyols can be made by heating a thermoplastic polyester such as virgin PET, recycled PET, or mixtures thereof, with a glycol to give a digested intermediate, which is then condensed with a dimer fatty acid to give the polyol. The invention includes a polyester polyol comprising recurring units of a glycol-digested thermoplastic polyester and a dimer fatty acid. The polyester polyol can also be made in a single step by reacting the thermoplastic polyester, glycol, and dimer acid under conditions effective to produce the polyol. High-recycle-content polyols having desirable properties and attributes for formulating polyurethane products, including aqueous polyurethane dispersions, can be made. The polyols provide a sustainable alternative to bio- or petrochemical-based polyols.
    Type: Application
    Filed: November 7, 2017
    Publication date: March 8, 2018
    Inventors: Shakti L. Mukerjee, Rick Tabor, Adam William Emerson, Kevin Anthony Rogers, Eric D. Vrabel, Matthew T. Brown, Matthew J. Beatty, Jack Rogers Kovsky, Michael D. Kellerman, Michael Robert Christy
  • Publication number: 20180057764
    Abstract: Sustainable lubricant compositions made from recycled thermoplastic polyesters and other reclaimed or biorenewable reactants and a method of formulating them are disclosed. The lubricant compositions comprise a polyester base oil, which incorporates recurring units from a digested thermoplastic polyester, a low-molecular-weight polyol, and C8-C24 fatty acid. The base oil has a number-average molecular weight within the range of 300 to 5000 g/mol, a hydroxyl value less than 50 mg KOH/g, and a viscosity at 40° C. less than 5000 cSt. Some of the lubricant compositions comprise the polyester base oil and one or more additives including anti-wear agents, corrosion inhibitors, antioxidants, thickeners, detergents, and the like.
    Type: Application
    Filed: August 25, 2017
    Publication date: March 1, 2018
    Inventors: Woo-Sung Bae, Jack R. Kovsky, Rick Tabor
  • Patent number: 9896540
    Abstract: The present invention relates to polyester polyols made from aromatic polyacid sources such as thermoplastic polyesters. The polyols can be made by heating a thermoplastic polyester such as virgin polyethylene terephthalate, recycled polyethylene terephthalate, or mixtures thereof, with a glycol to give a digested intermediate which is then reacted with a digestible polymer, which can be obtained from various recycle waste streams. The polyester polyols comprise a glycol-digested polyacid source and a further digestible polymer. The polyester polyols provide a sustainable alternative to petrochemical or biochemical based polyester polyols.
    Type: Grant
    Filed: July 8, 2016
    Date of Patent: February 20, 2018
    Assignee: Resinate Materials Group, Inc.
    Inventors: Rick Tabor, Eric David Vrabel, Matthew J Beatty, Gary E. Spilman, Kevin Anthony Rogers, Michael Robert Christy, Matthew Thomas Brown, Jack Rogers Kovsky, Woo-Sung Bae, Shakti L Mukerjee
  • Patent number: 9890243
    Abstract: The present invention relates to polymeric plasticizer compositions made from an aromatic acid source, a glycol, and a C4-C36 monocarboxylic acid, or ester or anhydride thereof. The aromatic acid source can include polymeric materials such as recycled polyethylene terephthalate (PET). The present invention also relates to methods for making the polymeric plasticizer compositions, to methods of plasticizing polymeric materials, and to plasticized polymeric compositions. The polymeric plasticizers are useful for plasticizing various polymers, such as thermoplastic polymers, including, for example, polyvinyl chloride (PVC). The polymeric plasticizers provide a sustainable alternative to conventional phthalate ester plasticizers, such as diisooctyl phthalate (DOP).
    Type: Grant
    Filed: January 6, 2017
    Date of Patent: February 13, 2018
    Assignee: Resinate Materials Group, Inc.
    Inventors: Woo-Sung Bae, Rick Tabor, Kevin Anthony Rogers, Shakti L. Mukerjee
  • Patent number: 9884938
    Abstract: The present invention relates to polymeric plasticizer compositions made from an aromatic acid source, a glycol, and a C4-C36 monocarboxylic acid, or ester or anhydride thereof. The aromatic acid source can include polymeric materials such as recycled polyethylene terephthalate (PET). The present invention also relates to methods for making the polymeric plasticizer compositions, to methods of plasticizing polymeric materials, and to plasticized polymeric compositions. The polymeric plasticizers are useful for plasticizing various polymers, such as thermoplastic polymers, including, for example, polyvinyl chloride (PVC). The polymeric plasticizers provide a sustainable alternative to conventional phthalate ester plasticizers, such as diisooctyl phthalate (DOP).
    Type: Grant
    Filed: January 17, 2017
    Date of Patent: February 6, 2018
    Assignee: Resinate Materials Group, Inc.
    Inventors: Woo-Sung Bae, Rick Tabor, Kevin Anthony Rogers, Shakti L. Mukerjee
  • Publication number: 20180030202
    Abstract: Polyester polyols, processes for making them, and applications for the polyols are disclosed. Some of the polyols comprise recurring units from a digested thermoplastic polyester (e.g., recycled polyethylene terephthalate), a diol, an optional hydrophobe, and a clarifier. The clarifier, which in some cases is a bisphenol, bisphenol alkoxylate, bisphenol polycarbonate, sulfonyl diphenol, or sulfonyl diphenol alkoxylate, helps the polyol remain clear for weeks or months after its preparation. In some aspects, the clarifier is a monophenol, bisphenol, or poly-phenol having two or more phenylene rings wherein at least two of the phenylene rings lack a common molecular axis. The clarifier may also be an alkylated phenol, an epoxy resin, an epoxy novolac resin, a diphenylmethane, or a tris(aryloxy)phosphate.
    Type: Application
    Filed: October 11, 2017
    Publication date: February 1, 2018
    Inventors: Rick Tabor, Eric D. Vrabel
  • Publication number: 20180030197
    Abstract: Polyester polyol compositions are disclosed. The polyol compositions, which comprise recurring units of a digested thermoplastic polyester, a glycol, and castor oil, ricinoleic acid, or a mixture of castor oil and ricinoleic acid, have hydroxyl numbers within the range of 20 to 150 mg KOH/g and average hydroxyl functionalities within the range of 2.5 to 3.5. The invention includes flexible polyurethane foams that incorporate the polyester polyols. Sustainable polyester polyols made completely or in substantial part from recycled, post-industrial, and/or biorenewable materials such as polyethylene terephthalate, glycols, and castor oil are provided. The polyols have desirable properties for formulating flexible polyurethane foams and other products.
    Type: Application
    Filed: August 1, 2017
    Publication date: February 1, 2018
    Inventors: Matt Brown, Michelle Samson, Jack R. Kovsky, Woo-Sung Bae, Shakti L. Mukerjee, Rick Tabor
  • Patent number: 9850400
    Abstract: The present invention relates to the chemical digestion of keratin, such as avian feathers and wool. The digestion product is made by heating the feathers or wool with a solvent selected from glycols, alkanolamines, polyamines, and combinations thereof. The resulting digested keratin product is a keratin-derived polyol useful for making polymeric materials such as polyurethanes. The digestion products provide a sustainable alternative to petrochemical based intermediates.
    Type: Grant
    Filed: October 14, 2015
    Date of Patent: December 26, 2017
    Assignee: Resinate Materials Group, Inc.
    Inventors: Rick Tabor, Eric David Vrabel, Matthew J Beatty, Jack Rogers Kovsky
  • Patent number: 9840584
    Abstract: Polyester polyols made from thermoplastic polyesters are disclosed. The polyols can be made by heating a thermoplastic polyester such as virgin PET, recycled PET, or mixtures thereof, with a glycol to give a digested intermediate, which is then condensed with a dimer fatty acid to give the polyol. The invention includes a polyester polyol comprising recurring units of a glycol-digested thermoplastic polyester and a dimer fatty acid. The polyester polyol can also be made in a single step by reacting the thermoplastic polyester, glycol, and dimer acid under conditions effective to produce the polyol. High-recycle-content polyols having desirable properties and attributes for formulating polyurethane products, including aqueous polyurethane dispersions, can be made. The polyols provide a sustainable alternative to bio- or petrochemical-based polyols.
    Type: Grant
    Filed: August 10, 2015
    Date of Patent: December 12, 2017
    Assignee: Resinate Materials Group, Inc.
    Inventors: Shakti L Mukerjee, Rick Tabor, Adam William Emerson, Kevin Anthony Rogers, Eric D Vrabel, Matthew T Brown, Matthew J Beatty, Jack Rogers Kovsky, Michael D Kellerman, Michael Robert Christy
  • Publication number: 20170335057
    Abstract: Polyester polyols, processes for making them, and applications for the polyols are disclosed. In some aspects, the polyols comprise recurring units from a thermoplastic polyester or an aromatic polyacid source, a glycol, and a hydroxy-functional ketal acid, ester or amide. Optionally, the polyols incorporate recurring units of a hydrophobe. The polyols are made in one or multiple steps; in some aspects, the thermoplastic polyester or aromatic polyacid source and the glycol are reacted first, followed by reaction with the hydroxy-functional ketal acid, ester or amide. The resulting polyols have good transparency and little or no particulate settling or phase separation. High-recycle-content polyols having desirable properties and attributes for formulating polyurethane products, including aqueous polyurethane dispersions, flexible and rigid foams, coatings, adhesives, sealants, and elastomers can be made. The polyols provide a sustainable alternative to bio- or petrochemical-based polyols.
    Type: Application
    Filed: October 27, 2015
    Publication date: November 23, 2017
    Inventors: Rick Tabor, Eric David Vrabel, Kevin Anthony Rogers, Matthew James Beatty, Woo-Sung Bae, Jack Rogers Kovsky, Michael Robert Christy
  • Publication number: 20170260353
    Abstract: A process for producing a polyester polyol comprising reacting a recycle stream selected from recycled PET carpet, carpet fiber, containers, textiles, articles or mixtures thereof, with a glycol in a reactor, thereby forming a digested product stream comprising polyols, and an undigested stream; and then reacting the digested product stream with a hydrophobe selected from dimer fatty acids, trimer fatty acids, oleic acid, ricinoleic acid, tung oil, corn oil, canola oil, soybean oil, sunflower oil, bacterial oil, yeast oil, algae oil, castor oil, triglycerides or alkyl carboxylate esters having saturated or unsaturated C6-C36 fatty acid units, saturated or unsaturated C6-C36 fatty acids, alkoxylated castor oil, saturated or unsaturated C9-C18 dicarboxylic acids or diols, cardanol-based products, recycled cooking oil, branched or linear C6-C36 fatty alcohols, hydroxy-functional materials derived from epoxidized, ozonized, or hydroformylated fatty esters or acids, or mixtures thereof.
    Type: Application
    Filed: May 23, 2017
    Publication date: September 14, 2017
    Inventors: Rick Tabor, Shakti L. Mukerjee, Kevin Anthony Rogers, Adam W. Emerson, Eric David Vrabel, Brian Douglas Phillips