Patents by Inventor Rie Matsubara

Rie Matsubara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11159824
    Abstract: Methods and systems for image encoding and decoding are disclosed. According to some embodiments, scene metadata and input images associated with a scene are received. A first encoding operation is performed on the scene metadata and input images to generate reference images and reference disparity information. A second encoding operation is performed on the reference images and reference disparity information to output encoded data. The encoded data includes encoded reference images and encoded reference disparity information. The encoded data is transmitted.
    Type: Grant
    Filed: June 23, 2021
    Date of Patent: October 26, 2021
    Assignee: Ostendo Technologies, Inc.
    Inventors: Zahir Y. Alpaslan, Song Cen, Wankai Liu, Rie Matsubara, Hussein S. El-Ghoroury, Dale A. McNeill
  • Publication number: 20210329299
    Abstract: Methods and systems for image encoding and decoding are disclosed. According to some embodiments, scene metadata and input images associated with a scene are received. A first encoding operation is performed on the scene metadata and input images to generate reference images and reference disparity information. A second encoding operation is performed on the reference images and reference disparity information to output encoded data. The encoded data includes encoded reference images and encoded reference disparity information. The encoded data is transmitted.
    Type: Application
    Filed: June 23, 2021
    Publication date: October 21, 2021
    Inventors: Zahir Y. Alpaslan, Song Cen, Wankai Liu, Rie Matsubara, Hussein S. El-Ghoroury, Dale A. McNeill
  • Patent number: 11051039
    Abstract: Methods and systems for image encoding and decoding are disclosed. According to some embodiments, scene metadata and input images associated with a scene are received. A first encoding operation is performed on the scene metadata and input images to generate reference images and reference disparity information. A second encoding operation is performed on the reference images and reference disparity information to output encoded data. The encoded data includes encoded reference images and encoded reference disparity information. The encoded data is transmitted.
    Type: Grant
    Filed: May 31, 2018
    Date of Patent: June 29, 2021
    Assignee: Ostendo Technologies, Inc.
    Inventors: Zahir Y. Alpaslan, Song Cen, Wankai Liu, Rie Matsubara, Hussein S. El-Ghoroury, Dale A. McNeill
  • Publication number: 20180352254
    Abstract: Methods and systems for image encoding and decoding are disclosed. According to some embodiments, scene metadata and input images associated with a scene are received. A first encoding operation is performed on the scene metadata and input images to generate reference images and reference disparity information. A second encoding operation is performed on the reference images and reference disparity information to output encoded data. The encoded data includes encoded reference images and encoded reference disparity information. The encoded data is transmitted.
    Type: Application
    Filed: May 31, 2018
    Publication date: December 6, 2018
    Inventors: Zahir Y. Alpaslan, Song Cen, Wankai Liu, Rie Matsubara, Hussein S. El-Ghoroury, Dale A. McNeill
  • Patent number: 9275798
    Abstract: A thin energy storage device having high capacity is obtained. An energy storage device having high output is obtained. A current collector and an active material layer are formed in the same manufacturing step. The number of manufacturing steps of an energy storage device is reduced. The manufacturing cost of an energy storage device is suppressed. One embodiment of the present invention relates to a method for manufacturing of an electric double layer capacitor, or a lithium ion capacitor, which includes porous metal electrodes formed by removing a metal from an alloy foil, and an electrolyte provided therebetween. A surface area per volume of the porous structure is greater than or equal to 100 m2/cm3.
    Type: Grant
    Filed: April 28, 2014
    Date of Patent: March 1, 2016
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Junpei Momo, Yumiko Saito, Rie Matsubara, Hiroatsu Todoriki
  • Patent number: 9085813
    Abstract: An object is to recover metallic lithium from metallic lithium on which an unnecessary substance is formed without discarding the metallic lithium on which an unnecessary substance is formed. The present invention relates to a method for recovering metallic lithium in such a manner that metallic lithium on which a substance is formed is reacted with nitrogen to form lithium nitride; the lithium nitride is reacted with carbon dioxide to form lithium carbonate; the lithium carbonate is reacted with hydrochloric acid to form lithium chloride; the lithium chloride and potassium chloride are melted; and electrolysis is applied to the melted lithium chloride and potassium chloride.
    Type: Grant
    Filed: September 14, 2011
    Date of Patent: July 21, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yumiko Saito, Junpei Momo, Rie Matsubara, Hiroatsu Todoriki
  • Patent number: 9011702
    Abstract: One of objects is to reduce the effect caused by the volume expansion of an active material. An embodiment is a method for manufacturing an electrode for a power storage device which includes an active material over one of surfaces of a current collector. The active material is formed by forming a conductive body functioning as the current collector; forming a mixed layer including an amorphous region and a microcrystalline region over one of surfaces of the conductive body; and etching the mixed layer selectively, so that a part of or the whole of the amorphous region is removed and the microcrystalline region is exposed. Thus, the effect caused by the volume expansion of the active material is reduced.
    Type: Grant
    Filed: September 23, 2010
    Date of Patent: April 21, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Kazutaka Kuriki, Junpei Momo, Rie Matsubara
  • Publication number: 20140230208
    Abstract: A thin energy storage device having high capacity is obtained. An energy storage device having high output is obtained. A current collector and an active material layer are formed in the same manufacturing step. The number of manufacturing steps of an energy storage device is reduced. The manufacturing cost of an energy storage device is suppressed. One embodiment of the present invention relates to an electric double layer capacitor which includes a pair of electrodes including a porous metal material, and an electrolyte provided between the pair of electrodes; or a lithium ion capacitor which includes a positive electrode that is a porous metal body functioning as a positive electrode current collector and a positive electrode active material layer, a negative electrode including a negative electrode current collector and a negative electrode active material layer, and an electrolyte provided between the positive electrode and the negative electrode.
    Type: Application
    Filed: April 28, 2014
    Publication date: August 21, 2014
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Junpei Momo, Yumiko Saito, Rie Matsubara, Hiroatsu Todoriki
  • Patent number: 8749953
    Abstract: A thin energy storage device having high capacity is obtained. An energy storage device having high output is obtained. A current collector and an active material layer are formed in the same manufacturing step. The number of manufacturing steps of an energy storage device is reduced. The manufacturing cost of an energy storage device is suppressed. One embodiment of the present invention relates to an electric double layer capacitor which includes a pair of electrodes including a porous metal material, and an electrolyte provided between the pair of electrodes; or a lithium ion capacitor which includes a positive electrode that is a porous metal body functioning as a positive electrode current collector and a positive electrode active material layer, a negative electrode including a negative electrode current collector and a negative electrode active material layer, and an electrolyte provided between the positive electrode and the negative electrode.
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: June 10, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Junpei Momo, Yumiko Saito, Rie Matsubara, Hiroatsu Todoriki
  • Patent number: 8541783
    Abstract: The present invention relates to a solar power generation device which includes an electric double-layer capacitor and a solar cell. The electric double-layer capacitor includes a pair of current collectors formed using a light-transmitting conductive material; active materials which are dispersed on the pair of current collectors; a light-transmitting electrolyte layer which is provided between the pair of current collectors; and a terminal portion which is electrically connected to the current collector. The solar cell includes, over a light-transmitting substrate, a first light-transmitting conductive film; a photoelectric conversion layer which is provided in contact with the first light-transmitting conductive film; and a second light-transmitting conductive film which is provided in contact with the photoelectric conversion layer.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: September 24, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yumiko Saito, Junpei Momo, Rie Matsubara, Kuniharu Nomoto, Hiroatsu Todoriki
  • Patent number: 8542478
    Abstract: An electric double layer capacitor, a lithium ion capacitor, and a charging device including a solar cell and either of the capacitors are disclosed. The electric double layer capacitor includes a first and second light-transmitting substrates; a pair of current collectors provided perpendicular to the substrates; active material layers provided on facing planes of the current collectors; and an electrolyte in a region surrounded by the substrates and the facing active material layers. The lithium ion capacitor includes a first and second light-transmitting substrates; a positive and negative electrode active material layers provided perpendicular to the substrates; and an electrolyte in a region surrounded by the facing substrates and the positive and negative electrode active material layers.
    Type: Grant
    Filed: November 17, 2011
    Date of Patent: September 24, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Junpei Momo, Yumiko Saito, Rie Matsubara, Hiroatsu Todoriki
  • Publication number: 20120126231
    Abstract: An electric double layer capacitor, a lithium ion capacitor, and a charging device including a solar cell and either of the capacitors are disclosed. The electric double layer capacitor includes a first and second light-transmitting substrates; a pair of current collectors provided perpendicular to the substrates; active material layers provided on facing planes of the current collectors; and an electrolyte in a region surrounded by the substrates and the facing active material layers. The lithium ion capacitor includes a first and second light-transmitting substrates; a positive and negative electrode active material layers provided perpendicular to the substrates; and an electrolyte in a region surrounded by the facing substrates and the positive and negative electrode active material layers.
    Type: Application
    Filed: November 17, 2011
    Publication date: May 24, 2012
    Inventors: Junpei MOMO, Yumiko SAITO, Rie MATSUBARA, Hiroatsu TODORIKI
  • Publication number: 20120073984
    Abstract: An object is to recover metallic lithium from metallic lithium on which an unnecessary substance is formed without discarding the metallic lithium on which an unnecessary substance is formed. The present invention relates to a method for recovering metallic lithium in such a manner that metallic lithium on which a substance is formed is reacted with nitrogen to form lithium nitride; the lithium nitride is reacted with carbon dioxide to form lithium carbonate; the lithium carbonate is reacted with hydrochloric acid to form lithium chloride; the lithium chloride and potassium chloride are melted; and electrolysis is applied to the melted lithium chloride and potassium chloride.
    Type: Application
    Filed: September 14, 2011
    Publication date: March 29, 2012
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Yumiko SAITO, Junpei MOMO, Rie MATSUBARA, Hiroatsu TODORIKI
  • Publication number: 20120032170
    Abstract: The present invention relates to a solar power generation device which includes an electric double-layer capacitor and a solar cell. The electric double-layer capacitor includes a pair of current collectors formed using a light-transmitting conductive material; active materials which are dispersed on the pair of current collectors; a light-transmitting electrolyte layer which is provided between the pair of current collectors; and a terminal portion which is electrically connected to the current collector. The solar cell includes, over a light-transmitting substrate, a first light-transmitting conductive film; a photoelectric conversion layer which is provided in contact with the first light-transmitting conductive film; and a second light-transmitting conductive film which is provided in contact with the photoelectric conversion layer.
    Type: Application
    Filed: August 2, 2011
    Publication date: February 9, 2012
    Inventors: Yumiko Saito, Junpei Momo, Rie Matsubara, Kuniharu Nomoto, Hiroatsu Todoriki
  • Publication number: 20120002348
    Abstract: A thin energy storage device having high capacity is obtained. An energy storage device having high output is obtained. A current collector and an active material layer are formed in the same manufacturing step. The number of manufacturing steps of an energy storage device is reduced. The manufacturing cost of an energy storage device is suppressed. One embodiment of the present invention relates to an electric double layer capacitor which includes a pair of electrodes including a porous metal material, and an electrolyte provided between the pair of electrodes; or a lithium ion capacitor which includes a positive electrode that is a porous metal body functioning as a positive electrode current collector and a positive electrode active material layer, a negative electrode including a negative electrode current collector and a negative electrode active material layer, and an electrolyte provided between the positive electrode and the negative electrode.
    Type: Application
    Filed: June 23, 2011
    Publication date: January 5, 2012
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Junpei MOMO, Yumiko SAITO, Rie MATSUBARA, Hiroatsu TODORIKI
  • Publication number: 20110073561
    Abstract: One of objects is to reduce the effect caused by the volume expansion of an active material. An embodiment is a method for manufacturing an electrode for a power storage device which includes an active material over one of surfaces of a current collector. The active material is formed by forming a conductive body functioning as the current collector; forming a mixed layer including an amorphous region and a microcrystalline region over one of surfaces of the conductive body; and etching the mixed layer selectively, so that a part of or the whole of the amorphous region is removed and the microcrystalline region is exposed. Thus, the effect caused by the volume expansion of the active material is reduced.
    Type: Application
    Filed: September 23, 2010
    Publication date: March 31, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei Yamazaki, Kazutaka Kuriki, Junpei Momo, Rie Matsubara
  • Publication number: 20090215353
    Abstract: An object is to reduce effects of emission luminance change of the a light emitting body which exhibits blue light emission (a blue-light emitting body) by electric field excitation, that is, a blue-light emitting body which is applicable to an inorganic EL element on the chromaticity coordinates of the light it emits. Further, another object is to improve the repeatability of images displayed on a light emitting device including the inorganic EL element and to realize stable display with the light emitting device which is hardly affected by luminance change. In a method for manufacturing an inorganic EL blue-light emitting body, a sulfide light emitting body, an additive, and a copper compound are mixed and the obtained mixture is baked at 600° C. or more and 1000° C. or less, whereby the sulfide light emitting body can include copper sulfide (CuxS, wherein x is preferably 0.5 to 2.5) as a part of the sulfide light emitting body.
    Type: Application
    Filed: February 9, 2009
    Publication date: August 27, 2009
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Junichiro SAKATA, Rie MATSUBARA
  • Publication number: 20090057612
    Abstract: It is an object to provide a novel phosphor which can be manufactured without using a defect formation step which is difficult to control, and a manufacturing method thereof. The phosphor has a structure including a phosphor host material and an emission excitation material which is dispersed in a marbled pattern in the phosphor host material while being in contact with it. The emission excitation material is selected from metal oxide, a semiconductor formed of an element belonging to Group 2B (Group 12) of the periodic table and an element belonging to Group 6B (Group 16) of the periodic table, or an element formed of an element belonging to Group 3B (Group 13) of the periodic table and an element belonging to Group 5B (Group 15) of the periodic table. The phosphor host material and the emission excitation material are mixed and baked with pressure to be joined.
    Type: Application
    Filed: August 12, 2008
    Publication date: March 5, 2009
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Makoto HOSOBA, Rie MATSUBARA, Yasuo NAKAMURA, Takahiro KAWAKAMI
  • Publication number: 20080237549
    Abstract: A novel phosphor material which can be manufactured without utilizing a fault formation process which is difficult to be controlled. The phosphor material has a eutectic structure formed of a base material that is a semiconductor formed of a Group 2 element and a Group 6 element, a semiconductor formed of a Group 3 element and a Group 5 element, or a ternary phosphor formed of an alkaline earth metal, a Group 3 element, and a Group 6 element, and a solid solution material including a transition metal. The phosphor material is suited for an EL element because of less variation of characteristic since defect formation process in which stress is applied externally to form a defect inside of a phosphor material is not needed.
    Type: Application
    Filed: March 24, 2008
    Publication date: October 2, 2008
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Yasuo NAKAMURA, Takahiro KAWAKAMI, Rie MATSUBARA, Makoto HOSOBA
  • Publication number: 20070205423
    Abstract: It is an object to provide a thin-type full-color display device with the long lifetime, inexpensively, in which desired emission luminance and desired color purity can be obtained at a low voltage. In a light-emitting device capable of full-color display, among a plurality of light-emitting elements emitting different emission colors (for example, colors of red (R), green (G), and blue (B)), at least one of the light-emitting elements of an emission color is a light-emitting element including an organic compound (an organic EL element), and the other light-emitting element of an emission color is a light-emitting element using an inorganic material as a light-emitting layer or a fluorescent layer (an inorganic EL element). It is to be noted that the organic EL element and the inorganic EL element are formed over the same substrate.
    Type: Application
    Filed: February 28, 2007
    Publication date: September 6, 2007
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei Yamazaki, Junichiro Sakata, Tomoya Aoyama, Kohei Ohshima, Rie Matsubara, Hideaki Kuwabara