Patents by Inventor Robello Samuel

Robello Samuel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240133288
    Abstract: A system can receive data relating to a tubular of a well system. The system can execute a first module to determine first outputs. The system can execute a second module to determine second outputs based on the first outputs. The system can execute a third module to determine third outputs based on the first outputs. The second outputs can include a crack-initiation fracture pressure, and the third outputs can include a crack-propagation fracture pressure. The system can identify a brittle-burst strength of the tubular from among the second outputs, the third outputs, and a standard burst strength of the tubular. The system can provide the brittle-burst strength of the tubular to facilitate an adjustment to the tubular to optimize a wellbore operation associated with the well system.
    Type: Application
    Filed: October 20, 2022
    Publication date: April 25, 2024
    Inventors: Zhengchun Michael Liu, Robello Samuel, Adolfo Gonzales, Yongfeng Kang
  • Publication number: 20240102376
    Abstract: A system can generate, via a software model, downhole pressure estimations and downhole debris estimations using caving parameters. Additionally, the system can generate, via the software model, settled caving volume percent estimations using the caving parameters. The system can determine a pack off volume percent using the downhole pressure estimations, the downhole debris estimations, and the settled caving volume percent estimations. The system can output, via a user interface, the pack off indicator and a subset of the caving parameters for use in adjusting a wellbore operation. The user interface can provide a plot of the pack off volume percent horizontally offset with respect to a plot of the subset of the caving parameters and a depth of the wellbore.
    Type: Application
    Filed: September 26, 2022
    Publication date: March 28, 2024
    Inventors: Zhengchun Michael Liu, Robello Samuel
  • Patent number: 11933135
    Abstract: A method for determining annular fluid expansion (“AFE”) within a borehole with a sealed casing string annulus. The method may include defining a configuration of the borehole. The method may further include defining a production operation and a borehole operation. The method may also include determining AFE within the borehole when performing the production operation. The method may further include determining AFE within the borehole when performing the borehole operation based on the AFE within the borehole when performing the production operation.
    Type: Grant
    Filed: January 14, 2020
    Date of Patent: March 19, 2024
    Inventors: Zhengchun Liu, Robello Samuel, Adolfo Gonzales, Jun Jiang, Yongfeng Kang
  • Publication number: 20240076979
    Abstract: A method for controlling computerized operations related to a wellbore comprises drilling the wellbore in a subsurface formation with a drill string including a drill bit. The method comprises acquiring a plurality of drilling parameters while drilling the wellbore. The method comprises determining, based on the plurality of drilling parameters, solids properties for solids forming a cutting plug up hole of the drill bit. The method comprises determining a length of the cutting plug based on the solids properties. The method comprises determining a cutting plug friction force based on the cutting plug length and a pressure differential across the cutting plug. The method comprises performing a drilling operation based on the cutting plug friction force.
    Type: Application
    Filed: September 2, 2022
    Publication date: March 7, 2024
    Inventors: Yuan Zhang, Robello Samuel, Zhengchun Michael Liu
  • Patent number: 11920455
    Abstract: A method for controlling computerized operations related to a wellbore comprises drilling the wellbore in a subsurface formation with a drill string including a drill bit. The method comprises acquiring a plurality of drilling parameters while drilling the wellbore. The method comprises determining, based on the plurality of drilling parameters, solids properties for solids forming a cutting plug up hole of the drill bit. The method comprises determining a length of the cutting plug based on the solids properties. The method comprises determining a cutting plug friction force based on the cutting plug length and a pressure differential across the cutting plug. The method comprises performing a drilling operation based on the cutting plug friction force.
    Type: Grant
    Filed: September 2, 2022
    Date of Patent: March 5, 2024
    Assignee: Landmark Graphics Corporation
    Inventors: Yuan Zhang, Robello Samuel, Zhengchun Michael Liu
  • Publication number: 20240070344
    Abstract: A system can be used for optimizing a wellbore operation via a metaverse space that can include one or more avatars. The system can provide access to the metaverse space for an entity. The metaverse space can be a computer-generated representation of a location relating to a wellbore operation. The system can receive, via an avatar in the metaverse space, a query from the entity relating to the wellbore operation. The avatar can include software applications for performing tasks in the metaverse space. The system can execute, via the avatar, a request to a micro-service for at least one solution parameter based on the query. The request can cause the micro-service to generate the at least one solution parameter. The system can receive the at least one solution parameter from the micro-service. The system can output the at least one solution parameter for adjusting the wellbore operation.
    Type: Application
    Filed: August 23, 2022
    Publication date: February 29, 2024
    Inventors: Robello Samuel, David James Crawshay, Abhishek Agrawal
  • Publication number: 20240068350
    Abstract: Processes to receive user input parameters and system input parameters associated with a borehole undergoing active drilling operations to continually update drilling directions with wholistically applied optimizations to bring the actual borehole trajectory closer to the planned borehole trajectory. The processes can project ahead of the drilling assembly to determine the actual trajectory of the borehole and generate corrections to reduce the gap between the actual and planned trajectory paths. Various optimizations can be applied to the corrections to avoid overstressing systems or reducing the borehole productivity. Conflicts between optimizations can be resolved using a weighting or ranking system. More than one set of corrections can be determined and a user or a machine learning system can be used to select the one set of corrections to use as the results to be communicated and applied to the drilling operation plan or a borehole system, such as a geo-steering system.
    Type: Application
    Filed: August 25, 2022
    Publication date: February 29, 2024
    Inventors: Shang Zhang, Jeremy Codling, Abhishek Agrawal, Robello Samuel
  • Patent number: 11891889
    Abstract: A method for assessing an integrity of metal tubular structures may comprise receiving one or more inputs, applying an algorithm to automatically select an appropriate model for a given corrosion scenario, applying a combined model including semi-empirical and multiphase flow corrosion characteristics to the one or more inputs, determining one or more corrosion parameters of either an internal pipe wall, an external pipe surface, or both, applying a corrosion correlation value to the one or more corrosion parameters to produce one or more correlated corrosion parameters, and storing the one or more correlated corrosion parameters on a computer readable medium. A system may comprise an information handling system which may comprise at least one memory operable to store computer-executable instructions, at least one communications interface to access the at least one memory, and at least one processor.
    Type: Grant
    Filed: May 16, 2019
    Date of Patent: February 6, 2024
    Assignee: Landmark Graphics Corporation
    Inventors: Zhengchun Liu, Robello Samuel, Adolfo Gonzales, Yongfeng Kang
  • Patent number: 11885214
    Abstract: The disclosure presents solutions for determining a casing wear parameter. Image collecting or capturing devices can be used to capture visual frames of a section of drilling pipe during a trip out operation. The visual frames can be oriented to how the drilling pipe was oriented within the borehole during a drilling operation. The visual frames can be analyzed for wear, e.g., surface changes, of the drilling pipe. The surface changes can be classified as to the type, depth, volume, length, shape, and other characteristics. The section of drilling pipe can be correlated to a depth range where the drilling pipe was located during drilling operations. The surface changes, with the depth range, can be correlated to an estimated casing wear to generate the casing wear parameter. An analysis of multiple sections of drilling pipe can be used to improve the locating of sections of casing where wear is likely.
    Type: Grant
    Filed: June 29, 2021
    Date of Patent: January 30, 2024
    Assignee: Landmark Graphics Corporation, Inc.
    Inventors: Robello Samuel, Rishi Adari
  • Patent number: 11873707
    Abstract: A system and method for controlling a drilling tool inside a wellbore makes use of projection of optimal rate of penetration (ROP) and optimal controllable parameters such as weight-on-bit (WOB), and rotations-per-minute (RPM) for drilling operations. Optimum controllable parameters for drilling optimization can be predicted using a data generation model to produce synthesized data based on model physics, an ROP model, and stochastic optimization. The synthetic data can be combined with real-time data to extrapolate the data across the WOB and RPM space. The values for WOB an RPM can be controlled to steer a drilling tool. Examples of models used include a non-linear model, a linear model, a recurrent generative adversarial network (RGAN) model, and a deep neural network model.
    Type: Grant
    Filed: March 9, 2018
    Date of Patent: January 16, 2024
    Assignee: Landmark Graphics Corporation
    Inventors: Srinath Madasu, Nishant Raizada, Keshava Rangarajan, Robello Samuel
  • Patent number: 11859485
    Abstract: A system can generate a trip map for adjusting a tripping operation in a wellbore. The system can receive input data from a downhole tool in a wellbore. The system can determine parameters for the tripping operation. The system can determine an overall condition for an interval of the wellbore based on the parameters. The system can determine a status for the parameters and for the overall condition based on a difference between the parameters or the overall condition and a corresponding optimized value. The system can generate a trip map using the parameters and the overall condition. The trip map can include a background shape and a polygon that can be positioned on the background shape. The polygon can include corners corresponding to the parameters and overall condition that are positioned angularly around the background. The trip map can be output to adjust the tripping operation.
    Type: Grant
    Filed: August 16, 2022
    Date of Patent: January 2, 2024
    Assignee: Landmark Graphics Corporation
    Inventor: Robello Samuel
  • Publication number: 20230399936
    Abstract: A system can receive input data indicating a current state of a wellbore drilling operation. The system can determine, by a set of software applications, constraints associated with the wellbore drilling operation. The system can optimize, by an optimization model and using the input data, a drilling parameter subject to the constraints associated with the wellbore drilling operation. The system can output the optimized drilling parameter for controlling the wellbore drilling operation.
    Type: Application
    Filed: June 14, 2022
    Publication date: December 14, 2023
    Inventors: Abhishek Agrawal, Shang Zhang, Robello Samuel
  • Patent number: 11841694
    Abstract: Systems and methods for predicting drilling tool failure based on an analysis of at least one of a plot of jerk and inverse jerk for the drilling tool and a plot of drilling tool failure pattern trends data.
    Type: Grant
    Filed: August 27, 2020
    Date of Patent: December 12, 2023
    Assignee: LANDMARK GRAPHICS CORPORATION
    Inventors: Robello Samuel, Aravind Prabhakar, Christopher Neil Marland
  • Patent number: 11795804
    Abstract: A drilling device may use a concurrent path planning process to create a path from a starting location to a destination location within a subterranean environment. The drilling device can receive sensor data. A probability distribution can be generated from the sensor data indicating one or more likely materials compositions that make up each portion of the subterranean environment. The probability distribution can be sampled, and for each sample, a drill path trajectory and drill parameters for the trajectory can be generated. A trained neural network may evaluate each trajectory and drill parameters to identify the most ideal trajectory based on the sensor data. The drilling device may then initiate drilling operations for a predetermined distance along the ideal trajectory.
    Type: Grant
    Filed: July 12, 2019
    Date of Patent: October 24, 2023
    Assignee: Landmark Graphics Corporation
    Inventors: Yashas Malur Saidutta, Srinath Madasu, Shashi Dande, Keshava Prasad Rangarajan, Raja Vikram R. Pandya, Jeffrey M. Yarus, Robello Samuel
  • Patent number: 11761298
    Abstract: A location of a cut and an amount of force to be used in a pull operation for a plug & abandonment (P&A) operation can be determined. Measurements of at least one characteristic of fluids and solids disposed in an annulus defined between a casing and a wall of a wellbore can be received. A total fluid and solid friction force drag can be determined using hydrostatic force that is determined from the measurements. A mechanical friction force drag can be determined based on a weight of the casing. The mechanical friction force drag and the total fluid and solid friction force drag can be used to determine a friction factor. The friction factor can be used to determine a depth location at which to cut the casing and a pull force for pulling the casing from the wellbore in the P&A operation.
    Type: Grant
    Filed: August 30, 2021
    Date of Patent: September 19, 2023
    Assignee: Landmark Graphics Corporation
    Inventors: Robello Samuel, William Wade Samec, Roddy Hebert, Robert H. Gales, Abbas Sami Eyuboglu
  • Patent number: 11761320
    Abstract: A method and system to drill a wellbore and identify drill bit failure by deconvoluting sensor data. The method comprises drilling the wellbore using a drill bit; and measuring data indicative of a parameter associated with the drill bit using a sensor located in the wellbore. The method also comprises decomposing the data to generate an intrinsic mode function of the drill bit data; and analyzing the intrinsic mode function to identify a drill bit failure. The system for drilling the wellbore comprises a drill bit; a sensor; and a processor. The sensor is located in the wellbore and operable to measure data indicative of a parameter associated with the drill bit. The processor is in communication with the sensor and operable to decompose the data to generate an intrinsic mode function of the drill bit data; and analyze the intrinsic mode function to identify a drill bit failure.
    Type: Grant
    Filed: May 15, 2017
    Date of Patent: September 19, 2023
    Assignee: Landmark Graphics Corporation
    Inventors: Robello Samuel, Vikrant Lakhanpal
  • Patent number: 11755792
    Abstract: The disclosure presents processes for improving the design phase of plastic material lined tubular structures used downhole of a borehole. A plastic material lined tubular structure model is utilized for tubular structures that have a metal layer, a grout layer, and a plastic material layer. The model can use a modified wall thickness for the metal layer. A strength model can be applied to the modified critical dimensions, e.g., wall thickness parameters. A thermal model can be applied to the tubular structure to determine pressure and temperature parameters. The strength model and the thermal model outputs can be utilized by a stress analyzer to determine loads, safety factors, and design limit parameters. The plastic material lined tubular structure model can enable more efficient use of tubular structures, designing a longer operational lifetime, such as in acidic environments, or the use of thinner structures while maintaining a satisfactory operational lifetime.
    Type: Grant
    Filed: January 19, 2021
    Date of Patent: September 12, 2023
    Assignee: Landmark Graphics Corporation
    Inventors: Zhengchun Liu, Robello Samuel, Adolfo Gonzales, Yongfeng Kang
  • Publication number: 20230252200
    Abstract: The disclosure addresses the existing gap in tubular designs and monitoring of tubulars in wellbores by considering high temperature, cyclic thermal loading effects. An example method of designing tubular for use in a well is provided that includes: (1) receiving a well configuration for a well and at least one type of well operation for the well, (2) receiving a selection of a tubular for use in the well, (3) generating a temperature history and a pressure history for the well using the well configuration, the selection of the tubular, the at least one type of well operation, and one or more simulators, and (4) determining, using the temperature history and the pressure history, a derated strength of the tubular based on one or more effects of high temperature, cyclic thermal loadings on the tubular.
    Type: Application
    Filed: February 4, 2022
    Publication date: August 10, 2023
    Inventors: Yongfeng Kang, Robello Samuel, Vagish Kumar
  • Patent number: 11714210
    Abstract: A system can determine a temperature profile based on a prior production temperature profile and a reference start point pressure for a well. The system can virtually divide the well into a plurality of sections including uphill sections and downhill sections. The system can determine a gas-oil interface depth for each section of the plurality of sections from a water-oil ratio and a gas-oil ratio based on the temperature profile and the reference start point pressure. The system can determine an oil-water interface depth for each section of the plurality of sections from the gas-oil ratio and the water-oil ratio based on the temperature profile and the reference start point pressure.
    Type: Grant
    Filed: May 7, 2021
    Date of Patent: August 1, 2023
    Assignee: Landmark Graphics Corporation
    Inventors: Yongfeng Kang, Adolfo Gonzales, Robello Samuel, Zhengchun Liu, Nitish Chaudhari
  • Patent number: 11697989
    Abstract: A system is described for calculating and outputting micro invisible lost time (MILT). The system may include a processor and a non-transitory computer-readable medium comprising instructions that are executable by the processor to cause the processor to perform various operations. Time-stamp data that includes values of drilling parameters may be received about a drilling operation, and the values of drilling parameters may be classified into a rig state that includes rig activities. For each rig activity, an actual completion time may be determined and compared to an expected completion time for determining a deviation. At least one deviated activity, in which the deviation is greater than a threshold, may be determined. Deviations may be combined into MILT that can be output for controlling the drilling operation.
    Type: Grant
    Filed: August 27, 2020
    Date of Patent: July 11, 2023
    Assignee: Landmark Graphics Corporation
    Inventors: Manish K. Mittal, Robello Samuel