Patents by Inventor Robert A. Clark

Robert A. Clark has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200006100
    Abstract: This disclosure relates to a high volume manufacturing system for processing and measuring workpieces in a semiconductor processing sequence without leaving the system's controlled environment (e.g., sub-atmospheric pressure). The systems process chambers are connected to each other via transfer chambers used to move the workpieces, in the controlled environment, between the process chambers. Further, the pass-through chambers may be disposed between the transfer chambers or between the transfer chamber and the process chamber. The pass-through chambers may include a measurement region to measure workpiece attributes when the workpiece is moved through or placed in the pass-through chamber. The transfer chambers may also have separate measurement regions within their internal space to measure other attributes of the workpiece.
    Type: Application
    Filed: March 18, 2019
    Publication date: January 2, 2020
    Applicant: Tokyo Electron Limited
    Inventors: Robert Clark, Eric Chih-Fang Liu, Angelique Raley, Holger Tuitje, Kevin Siefering
  • Patent number: 10507755
    Abstract: The modular recreation vehicle is a vehicle with a modular storage capacity that is configured for use during recreational activities. The modular recreation vehicle comprises a domestic space that within which sanitary and cooking facilities are installed. The modular recreation vehicle further comprises a plurality of anchor tracks which may be used to install in a removable fashion domestic items such as furniture items for relaxation or storage purposes.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: December 17, 2019
    Inventors: Robert Clark, Rebecca White
  • Publication number: 20190375575
    Abstract: A grain-popping machine and associated pod-based popping method is disclosed. The grain-popping is configured to receive a pod. Each pod includes a plurality of cells, with each cell preferably containing a single grain kernel or seed, flavoring, and a cooking medium such as oil or shortening. In a preferred embodiment, the pod is loaded into the grain-popping machine through a slot so that it is held in position adjacent to a heating element. The heating element is activated to begin a popping sequence. When each grain kernel or seed in the pod reaches popping temperature, it absorbs the flavoring in its cell and ejects through the bottom of the pod, which can be weakened to ease ejection, into a bowl positioned in a receiving area of the grain-popping machine. The pod is then removed and disposed of.
    Type: Application
    Filed: August 22, 2019
    Publication date: December 12, 2019
    Applicant: Opopop, Inc.
    Inventors: Bradley Roulier, Jonas Tempel, Gary Ashurst, Robert Clark
  • Publication number: 20190380041
    Abstract: Methods and systems for channel mapping in a densely deployed network are disclosed. The system includes a node comprising a plurality of base stations configured to communicate with client devices in a wireless communication network, wherein transmission from the base stations to the client devices is conducted on a downlink (DL) frequency band and transmission from the client devices to the base stations is conducted on an uplink (UL) frequency band. The DL frequency band is different from the UL frequency band. DL and UL frequency pairs for the base stations are assigned according to a channel mapping scheme that determines DL and UL frequency pairs based on a plurality of channel parameters. The channel parameters include, for example, received signal strength indicator (RSSI), signal to noise (S/N) ratio, channel capacity, and bit error rate (BER).
    Type: Application
    Filed: May 29, 2019
    Publication date: December 12, 2019
    Inventors: Rakesh Taori, Shadi Abu-Surra, Farooq Khan, Eran Pisek, Sudhir Ramakrishna, Robert Clark Daniels
  • Patent number: 10501370
    Abstract: An optical fiber and its manufacture are provided. The optical fiber includes an optical waveguide and a cured primary coating layer surrounding the optical waveguide. The optical fiber further includes a cured secondary coating layer surrounding the cured primary coating layer. The optical fiber further includes a cured tertiary ink coating layer surrounding the cured secondary coating layer. The cured tertiary ink coating layer has a glass transition temperature (Tg-ink) of greater than or equal to 75° C.
    Type: Grant
    Filed: November 8, 2018
    Date of Patent: December 10, 2019
    Assignee: Corning Incorporated
    Inventors: Dana Craig Bookbinder, Robert Clark Moore, Darren Andrew Stainer, Pushkar Tandon, Ruchi Tandon, Michael James Todt
  • Publication number: 20190359517
    Abstract: A method of processing an optical fiber includes drawing the optical fiber from a heated glass source, reheating the optical fiber, and cooling the optical fiber under vacuum at a cooling rate less than the cooling rate of the optical fiber in air at 25° C. and 1 atm. Cooling the optical fiber under vacuum is conducted after reheating the optical fiber. Cooling the optical fiber under vacuum reduces the rate of heat transfer from the optical fiber, which may enable further relaxation of the glass and reduction in the fictive temperature of the optical fiber. A system for processing an optical fiber includes a furnace containing a fiber preform, a first positioner, a reheating device, and a treatment device downstream of the reheating device, the treatment device operable to cool the optical fiber under vacuum to reduce the rate of heat transfer from the optical fiber.
    Type: Application
    Filed: May 21, 2019
    Publication date: November 28, 2019
    Inventors: Yacob Mesfin Argaw, Nikolaos Pantelis Kladias, Robert Clark Moore, Bruce Warren Reding, Chunfeng Zhou
  • Patent number: 10479720
    Abstract: A method of making optical fibers that includes controlled cooling to produce fibers having a low concentration of non-bridging oxygen defects and low sensitivity to hydrogen. The method may include heating a fiber preform above its softening point, drawing a fiber from the heated preform and passing the fiber through two treatment stages. The fiber may enter the first treatment stage at a temperature between 1500° C. and 1700° C., may exit the first treatment stage at a temperature between 1200° C. and 1400° C., and may experience a cooling rate less than 5000° C./s in the first treatment stage. The fiber may enter the second treatment stage downstream from the first treatment stage at a temperature between 1200° C. and 1400° C., may exit the second treatment stage at a temperature between 1000° C. and 1150° C., and may experience a cooling rate between 5000° C./s and 12,000° C./s in the second treatment stage.
    Type: Grant
    Filed: July 23, 2014
    Date of Patent: November 19, 2019
    Assignee: Corning Incorporated
    Inventors: Steven Akin Dunwoody, Robert Clark Moore, Pushkar Tandon
  • Patent number: 10484023
    Abstract: Systems and methods enable wireless devices to measure interference and allow coexistence by preventing transmission on bands that are currently in use by other devices.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: November 19, 2019
    Assignee: Phazr, Inc.
    Inventors: Robert Clark Daniels, Rakesh Taori, Farooq Khan
  • Publication number: 20190348020
    Abstract: A method for representing an intended prosody in synthesized speech includes receiving a text utterance having at least one word, and selecting an utterance embedding for the text utterance. Each word in the text utterance has at least one syllable and each syllable has at least one phoneme. The utterance embedding represents an intended prosody. For each syllable, using the selected utterance embedding, the method also includes: predicting a duration of the syllable by encoding linguistic features of each phoneme of the syllable with a corresponding prosodic syllable embedding for the syllable; predicting a pitch contour of the syllable based on the predicted duration for the syllable; and generating a plurality of fixed-length predicted pitch frames based on the predicted duration for the syllable. Each fixed-length predicted pitch frame represents part of the predicted pitch contour of the syllable.
    Type: Application
    Filed: April 12, 2019
    Publication date: November 14, 2019
    Applicant: Google LLC
    Inventors: Robert Clark, Chun-an Chan, Vincent Wan
  • Publication number: 20190328749
    Abstract: An improved long-acting injectable depot suspension formulation of LB displaying progestational effects which overcomes the aggregation and physical instability of LB injectable depot products, and also provides a longer duration of action of at least 4 months. Potential uses of this formulation include but are not limited to contraception and treatment or prevention of progestin/progesterone-sensitive reproductive tract dysfunctions and disorders.
    Type: Application
    Filed: February 23, 2017
    Publication date: October 31, 2019
    Inventors: Timothy J. MCCORMICK, Gustavo F. DONCEL, Meredith Roberts CLARK, Jill SCHWARTZ
  • Patent number: 10456291
    Abstract: This application relates to a method of covering a pessary device for relief of female incontinence with an overwrap. More particularly, the present invention relates to methods of conforming the overwrap to the pessary device using a sealing mechanism.
    Type: Grant
    Filed: April 21, 2017
    Date of Patent: October 29, 2019
    Assignee: The Procter & Gamble Company
    Inventors: Kevin Charles Strong, Robert Clark Avery, Jr., Evan Joseph Durling, Christian Giuliani
  • Publication number: 20190320693
    Abstract: A grain-popping machine and associated pod-based popping method is disclosed. The grain-popping is configured to receive a pod. Each pod includes a plurality of cells, with each cell preferably containing a single grain kernel or seed, flavoring, and a cooking medium such as oil or shortening. In a preferred embodiment, the pod is loaded into the grain-popping machine through a slot so that it is held in position adjacent to a heating element. The heating element is activated to begin a popping sequence. When each grain kernel or seed in the pod reaches popping temperature, it absorbs the flavoring in its cell and ejects through the bottom of the pod, which can be weakened to ease ejection, into a bowl positioned in a receiving area of the grain-popping machine. The pod is then removed and disposed of.
    Type: Application
    Filed: October 29, 2018
    Publication date: October 24, 2019
    Applicant: Opopop, Inc.
    Inventors: Bradley Roulier, Jonas Tempel, Gary Ashurst, Robert Clark
  • Publication number: 20190295906
    Abstract: A method is provided for self-aligned multi-patterning on a semiconductor workpiece using an integrated sequence of processing steps executed on a common manufacturing platform hosting one or more film-forming modules, one or more etching modules, and one or more transfer modules. A workpiece having a mandrel pattern formed thereon is received into the common manufacturing platform. A sidewall spacer pattern is formed based, at least in part, on the mandrel pattern, the sidewall spacer pattern having a plurality of second features separated by a second pitch distance with the first pitch distance being greater than the second pitch distance. The integrated sequence of processing steps is executed within the common manufacturing platform without leaving the controlled environment and the transfer modules are used to transfer the workpiece between the processing modules while maintaining the workpiece within the controlled environment. Broadly, forming a sidewall spacer pattern based on the mandrel pattern.
    Type: Application
    Filed: March 18, 2019
    Publication date: September 26, 2019
    Inventors: Robert Clark, Richard Farrell, Kandabara Tapily, Angelique Raley, Sophie Thibaut
  • Publication number: 20190295891
    Abstract: A method for forming a fully self-aligned via is provided. A workpiece having a pattern of features in a dielectric layer is received into a common manufacturing platform. Metal caps are deposited on the metal features, and a barrier layer is deposited on the metal caps. A first dielectric layer is added to exposed dielectric material. The barrier layer is removed and an etch stop layer is added on the exposed surfaces of the first dielectric layer and the metal caps. Additional dielectric material is added on top of the etch stop layer, then both the additional dielectric material and a portion of the etch stop layer are etched to form a feature to be filled with metal material. An integrated sequence of processing steps is executed within one or more common manufacturing platforms to provide controlled environments. Transfer modules transfer the workpiece between processing modules within and between controlled environments.
    Type: Application
    Filed: March 19, 2019
    Publication date: September 26, 2019
    Inventors: Robert Clark, Kandabara Tapily, Kai-Hung Yu
  • Publication number: 20190295845
    Abstract: A method is provided for area-selective deposition on a semiconductor workpiece using an integrated sequence of processing steps executed on a common manufacturing platform hosting one or more film-forming modules, one or more etching modules, and one or more transfer modules. A workpiece having a target surface of a first material and a non-target surface of a second material different than the first material is received into the common manufacturing platform. An additive material is deposited on the workpiece with selectivity that results in the additive material forming on the target surface at a higher deposition rate than on the non-target surface, followed by etching to expose the non-target surface. The integrated sequence of processing steps is executed within the common manufacturing platform without leaving the controlled environment and the transfer modules are used to transfer the workpiece between the processing modules while maintaining the workpiece within the controlled environment.
    Type: Application
    Filed: March 18, 2019
    Publication date: September 26, 2019
    Inventors: Robert Clark, Kandabara Tapily, Jason Mehigan
  • Publication number: 20190295905
    Abstract: A method is provided for gate contact formation on a semiconductor workpiece using an integrated sequence of processing steps executed on a common manufacturing platform (CMP) hosting one or more film-forming modules, one or more etching modules, and one or more transfer modules. A workpiece having a contact feature formed therein, and inspected throughout, the contact feature having a semiconductor contact surface exposed, is received into the CMP. A plurality of metal layers is deposited at a bottom of the contact feature after the workpiece is treated to remove contamination. The integrated sequence of processing steps is executed within the CMP without leaving the controlled environment, the transfer modules used to transfer the workpiece between the modules while maintaining the workpiece within the controlled environment.
    Type: Application
    Filed: March 18, 2019
    Publication date: September 26, 2019
    Inventor: Robert Clark
  • Publication number: 20190292090
    Abstract: A furnace system includes a muffle defining a furnace cavity. A lower heater is coupled to the muffle and is configured to create a hot zone within the furnace cavity having a temperature of about 1900° C. or greater. An upper muffle extension is positioned above the muffle and defines a handle cavity. A downfeed handle is positioned within the handle cavity such that a gap is defined between an outer surface of the downfeed handle and an inner surface of the upper muffle extension. An upper heater is thermally coupled to the upper muffle extension and configured to heat the gap. A gas screen is positioned in the upper muffle extension and is configured to inject a process gas into the handle cavity.
    Type: Application
    Filed: March 11, 2019
    Publication date: September 26, 2019
    Inventors: Erling Richard Anderson, Tammy M Hoffmann, John Michael Jewell, Nikolaos Pantelis Kladias, Robert Clark Moore
  • Publication number: 20190295903
    Abstract: A method is provided for area-selective deposition on a semiconductor workpiece using an integrated sequence of processing steps executed on a common manufacturing platform hosting film-forming modules, etching modules, and transfer modules. A workpiece having a target surface of a first material an non-target surface of a second material different than the first material is received into the platform. An additive material is selectively deposited on the workpiece with the additive material forming on the target surface at a higher deposition rate than on the non-target surface, followed by etching to expose the non-target surface. The integrated sequence of processing steps is executed within the platform without leaving the controlled environment and the transfer modules are used to transfer the workpiece between the processing modules while maintaining the workpiece within the controlled environment.
    Type: Application
    Filed: March 18, 2019
    Publication date: September 26, 2019
    Inventors: Robert Clark, Kandabara Tapily, Jason Mehigan
  • Publication number: 20190295904
    Abstract: A method is provided for gate contact formation on a semiconductor workpiece using an integrated sequence of processing steps executed on a common manufacturing platform (CMP) hosting one or more film-forming modules, one or more etching modules, and one or more transfer modules. A workpiece having a contact feature formed therein, and inspected throughout, the contact feature having a semiconductor contact surface exposed, is received into the CMP. A metal layer is deposited within the contact feature after the workpiece is treated to remove contamination. The integrated sequence of processing steps is executed within the CMP without leaving the controlled environment, the transfer modules used to transfer the workpiece between the modules while maintaining the workpiece within the controlled environment.
    Type: Application
    Filed: March 18, 2019
    Publication date: September 26, 2019
    Inventor: Robert Clark
  • Publication number: 20190295890
    Abstract: A method for forming a fully self-aligned via is provided. A workpiece having a pattern of features in a dielectric layer is received into a common manufacturing platform. Metal caps are deposited on the metal features, and a barrier layer is deposited on the metal caps. A first dielectric layer is added to exposed dielectric material. The barrier layer is removed and an etch stop layer is added on the exposed surfaces of the first dielectric layer and the metal caps. Additional dielectric material is added on top of the etch stop layer, then both the additional dielectric material and a portion of the etch stop layer are etched to form a feature to be filled with metal material. An integrated sequence of processing steps is executed within one or more common manufacturing platforms to provide controlled environments. Transfer modules transfer the workpiece between processing modules within and between controlled environments.
    Type: Application
    Filed: March 19, 2019
    Publication date: September 26, 2019
    Inventors: Robert Clark, Kandabara Tapily, Kai-Hung Yu