Patents by Inventor Robert A. Weaver
Robert A. Weaver has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20100116671Abstract: A process for metallization of a workpiece, such as a semiconductor workpiece. In an embodiment, an alkaline electrolytic copper bath is used to electroplate copper onto a seed layer, electroplate copper directly onto a barrier layer material, or enhance an ultra-thin copper seed layer which has been deposited on the barrier layer using a deposition process such as PVD. The resulting copper layer provides an excellent conformal copper coating that fills trenches, vias, and other microstructures in the workpiece. When used for seed layer enhancement, the resulting copper seed layer provide an excellent conformal copper coating that allows the microstructures to be filled with a copper layer having good uniformity using electrochemical deposition techniques. Further, copper layers that are electroplated in the disclosed manner exhibit low sheet resistance and are readily annealed at low temperatures.Type: ApplicationFiled: October 3, 2006Publication date: May 13, 2010Applicant: Semitool, Inc.Inventors: Linlin Chen, Gregory J. Wilson, Paul R. McHugh, Robert A. Weaver, Thomas L. Ritzdorf
-
Patent number: 7332066Abstract: A process for metallization of a workpiece, such as a semiconductor workpiece. In an embodiment, an alkaline electrolytic copper bath is used to electroplate copper onto a seed layer, electroplate copper directly onto a barrier layer material, or enhance an ultra-thin copper seed layer which has been deposited on the barrier layer using a deposition process such as PVD. The resulting copper layer provides an excellent conformal copper coating that fills trenches, vias, and other microstructures in the workpiece. When used for seed layer enhancement, the resulting copper seed layer provide an excellent conformal copper coating that allows the microstructures to be filled with a copper layer having good uniformity using electrochemical deposition techniques. Further, copper layers that are electroplated in the disclosed manner exhibit low sheet resistance and are readily annealed at low temperatures.Type: GrantFiled: February 7, 2005Date of Patent: February 19, 2008Assignee: Semitool, Inc.Inventors: Linlin Chen, Gregory J. Wilson, Paul R. McHugh, Robert A. Weaver, Thomas L. Ritzdorf
-
Patent number: 7189318Abstract: A facility for selecting and refining electrical parameters for processing a microelectronic workpiece in a processing chamber is described. The facility initially configures the electrical parameters in accordance with either a mathematical model of the processing chamber or experimental data derived from operating the actual processing chamber. After a workpiece is processed with the initial parameter configuration, the results are measured and a sensitivity matrix based upon the mathematical model of the processing chamber is used to select new parameters that correct for any deficiencies measured in the processing of the first workpiece. These parameters are then used in processing a second workpiece, which may be similarly measured, and the results used to further refine the parameters.Type: GrantFiled: May 24, 2001Date of Patent: March 13, 2007Assignee: Semitool, Inc.Inventors: Gregory J. Wilson, Paul R. McHugh, Robert A. Weaver, Thomas L. Ritzdorf
-
Patent number: 7160421Abstract: A facility for selecting and refining electrical parameters for processing a microelectronic workpiece in a processing chamber is described. The facility initially configures the electrical parameters in accordance with either a mathematical model of the processing chamber or experimental data derived from operating the actual processing chamber. After a workpiece is processed with the initial parameter configuration, the results are measured and a sensitivity matrix based upon the mathematical model of the processing chamber is used to select new parameters that correct for any deficiencies measured in the processing of the first workpiece. These parameters are then used in processing a second workpiece, which may be similarly measured, and the results used to further refine the parameters.Type: GrantFiled: May 24, 2001Date of Patent: January 9, 2007Assignee: Semitool, Inc.Inventors: Gregory J. Wilson, Paul R. McHugh, Robert A. Weaver, Thomas L. Ritzdorf
-
Patent number: 7115196Abstract: A process for metallization of a workpiece, such as a semiconductor workpiece. In an embodiment, an alkaline electrolytic copper bath is used to electroplate copper onto a seed layer, electroplate copper directly onto a barrier layer material, or enhance an ultra-thin copper seed layer which has been deposited on the barrier layer using a deposition process such as PVD. The resulting copper layer provides an excellent conformal copper coating that fills trenches, vias, and other microstructures in the workpiece. When used for seed layer enhancement, the resulting copper seed layer provide an excellent conformal copper coating that allows the microstructures to be filled with a copper layer having good uniformity using electrochemical deposition techniques. Further, copper layers that are electroplated in the disclosed manner exhibit low sheet resistance and are readily annealed at low temperatures.Type: GrantFiled: February 27, 2003Date of Patent: October 3, 2006Assignee: Semitool, Inc.Inventors: Linlin Chen, Gregory J. Wilson, Paul R. McHugh, Robert A. Weaver, Thomas L. Ritzdorf
-
Patent number: 7102763Abstract: A method and apparatus for processing a microelectronic workpiece using metrology. The apparatus can include one or more processing or transport units, a metrology unit, and a control unit coupled to the metrology unit and at least one of the processing or transport units. The control unit can modify a process recipe or a process sequence of the processing unit based on a feed forward or a feed back signal from the metrology unit. The control unit can also provide instructions to the transport unit to move the workpiece to a selected processing unit. The processing unit can include, inter alia, a seed layer deposition unit, a process layer electrochemical deposition unit, a seed layer enhancement unit, a chemical mechanical polishing unit, and/or an annealing chamber arranged for sequential processing of a workpiece. The processing units can be controlled as an integrated system using one or more metrology units, or a separate metrology unit can provide input to the processing units.Type: GrantFiled: July 9, 2001Date of Patent: September 5, 2006Assignee: Semitool, Inc.Inventors: Thomas L. Ritzdorf, Steve L. Eudy, Gregory J. Wilson, Paul R. McHugh, Robert A. Weaver, Brian Aegerter, Curt Dundas, Steven L. Peace
-
Patent number: 7020537Abstract: A facility for selecting and refining electrical parameters for processing a microelectronic workpiece in a processing chamber is described. The facility initially configures the electrical parameters in accordance with either a numerical of the processing chamber or experimental data derived from operating the actual processing chamber. After a workpiece is processed with the initial parameter configuration, the results are measured and a sensitivity matrix based upon the numerical model of the processing chamber is used to select new parameters that correct for any deficiencies measured in the processing of the first workpiece. These parameters are then used in processing a second workpiece, which may be similarly measured, and the results used to further refine the parameters.Type: GrantFiled: May 4, 2001Date of Patent: March 28, 2006Assignee: Semitool, Inc.Inventors: Gregory J. Wilson, Paul R. McHugh, Robert A. Weaver, Thomas L. Ritzdorf
-
Patent number: 6881309Abstract: In an electroplating reactor for plating a spinning wafer, a diffusion plate is supported above an anode located within a cup filled with process fluid within the reactor. The diffusion plate includes a plurality of openings which are arranged in a spiral pattern. The openings allow for an improved plating thickness distribution on the wafer surface. The openings can be elongated slots curved along the direction of the spiral path.Type: GrantFiled: June 14, 2001Date of Patent: April 19, 2005Assignee: Semitool, Inc.Inventors: Kyle M. Hanson, Robert A. Weaver, Jerry Simchuk, Raymon F. Thompson
-
Patent number: 6861027Abstract: An apparatus for thermally processing a microelectronic workpiece is set forth. The apparatus comprises a first assembly and a second assembly, disposed opposite one another, with an actuator disposed to provide relative movement between the first assembly and second assembly. More particularly, the actuator provides relative movement between at least a loading position in which the first assembly is in a state for loading or unloading of the microelectronic workpiece, and a thermal processing position in which the first assembly and second assembly are proximate one another and form a thermal processing chamber. A thermal transfer unit is disposed in the second assembly and has a workpiece support surface that is heated and cooled in a controlled manner.Type: GrantFiled: August 27, 2002Date of Patent: March 1, 2005Assignee: Semitool, Inc.Inventors: Robert A. Weaver, Paul R. McHugh, Gregory J. Wilson
-
Publication number: 20040188259Abstract: A facility for selecting and refining electrical parameters for processing a microelectronic workpiece in a processing chamber is described. The facility initially configures the electrical parameters in accordance with either a mathematical model of the processing chamber or experimental data derived from operating the actual processing chamber. After a workpiece is processed with the initial parameter configuration, the results are measured and a sensitivity matrix based upon the mathematical model of the processing chamber is used to select new parameters that correct for any deficiencies measured in the processing of the first workpiece. These parameters are then used in processing a second workpiece, which may be similarly measured, and the results used to further refine the parameters.Type: ApplicationFiled: April 2, 2004Publication date: September 30, 2004Inventors: Gregory J. Wilson, Paul R. McHugh, Robert A. Weaver, Thomas L. Ritzdorf
-
Patent number: 6780374Abstract: An apparatus and method for processing a microelectronic workpiece at an elevated temperature. In one embodiment, the apparatus includes a workpiece support positioned to engage and support the microelectronic workpiece during operation. The apparatus can further include a heat source having a solid engaging surface positioned to engage a surface of the microelectronic workpiece with at least one of the heat source and the workpiece support being movable relative to the other between a first position with the microelectronic workpiece contacting the engaging surface of the heat source and a second position with the microelectronic workpiece spaced apart from the engaging surface. The heat source is sized to transfer heat to the microelectronic workpiece at a rate sufficient to thermally process a selected material of the microelectronic workpiece when the microelectronic workpiece is engaged with the heat source.Type: GrantFiled: December 8, 2000Date of Patent: August 24, 2004Assignee: Semitool, Inc.Inventors: Robert A. Weaver, Gregory J. Wilson, Paul R. McHugh
-
Apparatus and methods for transferring heat during chemical processing of microelectronic workpieces
Publication number: 20040108212Abstract: A method and apparatus for processing a microelectronic workpiece. The apparatus can include a vessel configured to receive a processing fluid and can further include a support member having a contacting portion configured to carry the microelectronic workpiece at least proximate to the vessel. The apparatus can further include a heater positioned at least proximate to at least one of the vessel and the support member to heat at least a portion of the support member. Alternatively, the heater can be positioned to heat at least a portion of the microelectronic workpiece in addition to, or in lieu of heating the support member.Type: ApplicationFiled: December 6, 2002Publication date: June 10, 2004Inventors: Lyndon Graham, Robert A. Weaver, Gregory J. Wilson, Kyle M. Hanson -
Publication number: 20040031693Abstract: A process for metallization of a workpiece, such as a semiconductor workpiece. In an embodiment, an alkaline electrolytic copper bath is used to electroplate copper onto a seed layer, electroplate copper directly onto a barrier layer material, or enhance an ultra-thin copper seed layer which has been deposited on the barrier layer using a deposition process such as PVD. The resulting copper layer provides an excellent conformal copper coating that fills trenches, vias, and other microstructures in the workpiece. When used for seed layer enhancement, the resulting copper seed layer provide an excellent conformal copper coating that allows the microstructures to be filled with a copper layer having good uniformity using electrochemical deposition techniques. Further, copper layers that are electroplated in the disclosed manner exhibit low sheet resistance and are readily annealed at low temperatures.Type: ApplicationFiled: February 27, 2003Publication date: February 19, 2004Inventors: Linlin Chen, Gregory J. Wilson, Paul R. McHugh, Robert A. Weaver, Thomas L. Ritzdorf
-
Patent number: 6565729Abstract: A process for metallization of a workpiece, such as a semiconductor workpiece. In an embodiment, an alkaline electrolytic copper bath is used to electroplate copper onto a seed layer, electroplate copper directly onto a barrier layer material, or enhance an ultra-thin copper seed layer which has been deposited on the barrier layer using a deposition process such as PVD. The resulting copper layer provides an excellent conformal copper coating that fills trenches, vias, and other microstructures in the workpiece. When used for seed layer enhancement, the resulting copper seed layer provide an excellent conformal copper coating that allows the microstructures to be filled with a copper layer having good uniformity using electrochemical deposition techniques. Further, copper layers that are electroplated in the disclosed manner exhibit low sheet resistance and are readily annealed at low temperatures.Type: GrantFiled: December 7, 2000Date of Patent: May 20, 2003Assignee: Semitool, Inc.Inventors: Linlin Chen, Gregory J. Wilson, Paul R. McHugh, Robert A. Weaver, Thomas L. Ritzdorf
-
Publication number: 20030057614Abstract: An apparatus for thermally processing a microelectronic workpiece is set forth. The apparatus comprises a first assembly and a second assembly, disposed opposite one another, with an actuator disposed to provide relative movement between the first assembly and second assembly. More particularly, the actuator provides relative movement between at least a loading position in which the first assembly is in a state for loading or unloading of the microelectronic workpiece, and a thermal processing position in which the first assembly and second assembly are proximate one another and form a thermal processing chamber. A thermal transfer unit is disposed in the second assembly and has a workpiece support surface that is heated and cooled in a controlled manner.Type: ApplicationFiled: August 27, 2002Publication date: March 27, 2003Inventors: Robert A. Weaver, Paul R. McHugh, Gregory J. Wilson
-
Publication number: 20030020928Abstract: A method and apparatus for processing a microelectronic workpiece using metrology. The apparatus can include one or more processing or transport units, a metrology unit, and a control unit coupled to the metrology unit and at least one of the processing or transport units. The control unit can modify a process recipe or a process sequence of the processing unit based on a feed forward or a feed back signal from the metrology unit. The control unit can also provide instructions to the transport unit to move the workpiece to a selected processing unit. The processing unit can include, inter alia, a seed layer deposition unit, a process layer electrochemical deposition unit, a seed layer enhancement unit, a chemical mechanical polishing unit, and/or an annealing chamber arranged for sequential processing of a workpiece. The processing units can be controlled as an integrated system using one or more metrology units, or a separate metrology unit can provide input to the processing units.Type: ApplicationFiled: July 9, 2001Publication date: January 30, 2003Inventors: Thomas L. Ritzdorf, Steve L. Eudy, Gregory J. Wilson, Paul R. McHugh, Robert A. Weaver, Brian Aegerter, Curt Dundas, Steven L. Peace
-
Patent number: 6471913Abstract: An apparatus for thermally processing a microelectronic workpiece is set forth. The apparatus comprises a first assembly and a second assembly, disposed opposite one another, with an actuator disposed to provide relative movement between the first assembly and second assembly. More particularly, the actuator provides relative movement between at least a loading position in which the first assembly is in a state for loading or unloading of the microelectronic workpiece, and a thermal processing position in which the first assembly and second assembly are proximate one another and form a thermal processing chamber. A thermal transfer unit is disposed in the second assembly and has a workpiece support surface that is heated and cooled in a controlled manner.Type: GrantFiled: February 9, 2000Date of Patent: October 29, 2002Assignee: Semitool, Inc.Inventors: Robert A. Weaver, Paul R. McHugh, Gregory J. Wilson
-
Publication number: 20020139678Abstract: A facility for selecting and refining electrical parameters for processing a microelectronic workpiece in a processing chamber is described. The facility initially configures the electrical parameters in accordance with either a mathematical model of the processing chamber or experimental data derived from operating the actual processing chamber. After a workpiece is processed with the initial parameter configuration, the results are measured and a sensitivity matrix based upon the mathematical model of the processing chamber is used to select new parameters that correct for any deficiencies measured in the processing of the first workpiece. These parameters are then used in processing a second workpiece, which may be similarly measured, and the results used to further refine the parameters.Type: ApplicationFiled: May 24, 2001Publication date: October 3, 2002Inventors: Gregory J. Wilson, Paul R. McHugh, Robert A. Weaver, Thomas L. Ritzdorf
-
Publication number: 20020125141Abstract: A facility for selecting and refining electrical parameters for processing a microelectronic workpiece in a processing chamber is described. The facility initially configures the electrical parameters in accordance with either a mathematical model of the processing chamber or experimental data derived from operating the actual processing chamber. After a workpiece is processed with the initial parameter configuration, the results are measured and a sensitivity matrix based upon the mathematical model of the processing chamber is used to select new parameters that correct for any deficiencies measured in the processing of the first workpiece. These parameters are then used in processing a second workpiece, which may be similarly measured, and the results used to further refine the parameters.Type: ApplicationFiled: May 24, 2001Publication date: September 12, 2002Inventors: Gregory J. Wilson, Paul R. McHugh, Robert A. Weaver, Thomas L. Ritzdorf
-
Publication number: 20020096508Abstract: An apparatus and method for processing a microelectronic workpiece at an elevated temperature. In one embodiment, the apparatus includes a workpiece support positioned to engage and support the microelectronic workpiece during operation. The apparatus can further include a heat source having a solid engaging surface positioned to engage a surface of the microelectronic workpiece with at least one of the heat source and the workpiece support being movable relative to the other between a first position with the microelectronic workpiece contacting the engaging surface of the heat source and a second position with the microelectronic workpiece spaced apart from the engaging surface. The heat source is sized to transfer heat to the microelectronic workpiece at a rate sufficient to thermally process a selected material of the microelectronic workpiece when the microelectronic workpiece is engaged with the heat source.Type: ApplicationFiled: December 8, 2000Publication date: July 25, 2002Inventors: Robert A. Weaver, Gregory J. Wilson, Paul R. McHugh