Patents by Inventor Robert Alan May

Robert Alan May has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240128138
    Abstract: Semiconductor packages and methods for forming semiconductor packages are disclosed. An example semiconductor package includes a substrate and a core. An insulator material is present over the core, and along a direction perpendicular to a first surface of the core, a portion of the insulator material is between the core and a first surface of the substrate. A via extends between the first surface of the core and a second surface of the core in the direction perpendicular to the first surface of the core. A bridge die is in a recess in the substrate. The bridge die is coupled with the via. An electronic component is coupled to an end of the via at a second surface of the substrate.
    Type: Application
    Filed: December 21, 2023
    Publication date: April 18, 2024
    Applicant: Intel Corporation
    Inventors: Robert L. Sankman, Rahul N. Manepalli, Robert Alan May, Srinivas Venkata Ramanuja Pietambaram, Bharat P. Penmecha
  • Publication number: 20240111089
    Abstract: Embodiments herein relate to systems, apparatuses, techniques, or processes for improving the refractive index of the coating that optically couples with an optical medium, wherein the coating includes one or more layers that include a plurality of nanorods. The plurality of nanorods within each of the one or more layers may have a similar orientation in the chemical composition. The nanorods within separate layers may have different characteristics, including different orientations, different sizes, and/or different chemical compositions. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: September 29, 2022
    Publication date: April 4, 2024
    Inventors: Yi YANG, Suddhasattwa NAD, Robert Alan MAY
  • Publication number: 20240111095
    Abstract: A hybrid plasmonic waveguide and associated methods are disclosed. In one example, the electronic device includes combining an electromagnetic wave propagating in a waveguide with a high refractive index and a surface plasmon from a metal surface to create a hybrid plasmon wave in a low refractive index material separating the dielectric waveguide and metal surface. In selected examples, surface mounted hybrid plasmonic waveguides are shown. In selected examples hybrid plasmonic waveguides embedded in glass interposers are shown.
    Type: Application
    Filed: September 30, 2022
    Publication date: April 4, 2024
    Inventors: Hiroki Tanaka, Brandon C. Marin, Robert Alan May, Suddhasattwa Nad, Benjamin Duong
  • Publication number: 20240112972
    Abstract: Disclosed herein are microelectronics package architectures utilizing photo-integrated glass interposers and photonic integrated glass layers and methods of manufacturing the same. The microelectronics packages may include an organic substrate, a photonic integrated glass layer, and a glass interpose. The organic substrate may define through substrate vias. The photonic integrated glass layer may be attached to the organic substrate. The photonic integrated glass layer may include photo detectors. The glass interposer may be attached to the organic substrate. The glass interposer may define through glass vias in optical communication with the photo detectors.
    Type: Application
    Filed: September 30, 2022
    Publication date: April 4, 2024
    Inventors: Hiroki Tanaka, Robert Alan May, Kristof Darmawikarta, Bai Nie, Brandon C. Marin, Jeremy D. Ecton, Srinivas Venkata Ramanuja Pietambaram, Changhua Liu
  • Publication number: 20240114627
    Abstract: Embodiments provides for a package substrate, including: a core comprising insulative material; first conductive traces in contact with a surface of the core; and buildup layers in contact with the first conductive traces and the surface of the core, the buildup layers comprising second conductive traces in an organic dielectric material. The first conductive traces comprise at least a first metal and a second metal, the first conductive traces comprise a first region proximate to and in contact with the core and a second region distant from the core, parallel and opposite to the first region, a relative concentration of the first metal to the second metal is higher in the first region than in the second region, and the relative concentration of the first metal to the second metal between the first region and the second region varies non-uniformly.
    Type: Application
    Filed: October 4, 2022
    Publication date: April 4, 2024
    Applicant: Intel Corporation
    Inventors: Jeremy Ecton, Robert Alan May, Suddhasattwa Nad, Srinivas V. Pietambaram, Brandon C. Marin
  • Publication number: 20240105621
    Abstract: A die interconnect substrate comprises a bridge die comprising at least one bridge interconnect connecting a first bridge die pad of the bridge die to a second bridge die pad of the bridge die. The die interconnect substrate comprises a multilayer substrate structure comprising a substrate interconnect. The bridge die is embedded in the multilayer substrate structure. The substrate interconnect extends from a level above the bridge die to a level below the bridge die. The multilayer substrate structure further comprises an electrically insulating layer comprising a first electrically insulating material. The multilayer substrate structure further comprises an electrically insulating filler structure located laterally between the bridge die and the electrically insulating layer, wherein the electrically insulating filler structure comprises a second electrically insulating material different from the first electrically insulating material.
    Type: Application
    Filed: November 30, 2023
    Publication date: March 28, 2024
    Inventors: Robert Alan MAY, Kristof DARMAWIKARTA, Sri Ranga Sai Sai BOYAPATI
  • Publication number: 20240096809
    Abstract: Microelectronic assemblies, related devices and methods, are disclosed herein.
    Type: Application
    Filed: September 15, 2022
    Publication date: March 21, 2024
    Applicant: Intel Corporation
    Inventors: Hiroki Tanaka, Robert Alan May, Onur Ozkan, Ali Lehaf, Steve Cho, Gang Duan, Jieping Zhang, Rahul N. Manepalli, Ravindranath Vithal Mahajan, Hamid Azimi
  • Publication number: 20240088121
    Abstract: Techniques for a patch to couple one or more surface dies to an interposer or motherboard are provided. In an example, the patch can include multiple embedded dies. In an example, a microelectronic device can be formed to include a patch on an interposer, where the patch can include multiple embedded dies and each die can have a different thickness.
    Type: Application
    Filed: November 16, 2023
    Publication date: March 14, 2024
    Inventors: Srinivas PIETAMBARAM, Robert Alan MAY, Kristof DARMAWIKARTA, Hiroki TANAKA, Rahul N. MANEPALLI, Sri Ranga Sai BOYAPATI
  • Patent number: 11923307
    Abstract: Disclosed herein are microelectronic structures including bridges, as well as related assemblies and methods. In some embodiments, a microelectronic structure may include a substrate and a bridge.
    Type: Grant
    Filed: June 16, 2020
    Date of Patent: March 5, 2024
    Assignee: Intel Corporation
    Inventors: Bai Nie, Gang Duan, Omkar G. Karhade, Nitin A. Deshpande, Yikang Deng, Wei-Lun Jen, Tarek A. Ibrahim, Sri Ranga Sai Boyapati, Robert Alan May, Yosuke Kanaoka, Robin Shea McRee, Rahul N. Manepalli
  • Patent number: 11901296
    Abstract: A die interconnect substrate comprises a bridge die comprising at least one bridge interconnect connecting a first bridge die pad of the bridge die to a second bridge die pad of the bridge die. The die interconnect substrate comprises a multilayer substrate structure comprising a substrate interconnect. The bridge die is embedded in the multilayer substrate structure. The substrate interconnect extends from a level above the bridge die to a level below the bridge die. The multilayer substrate structure further comprises an electrically insulating layer comprising a first electrically insulating material. The multilayer substrate structure further comprises an electrically insulating filler structure located laterally between the bridge die and the electrically insulating layer, wherein the electrically insulating filler structure comprises a second electrically insulating material different from the first electrically insulating material.
    Type: Grant
    Filed: December 27, 2022
    Date of Patent: February 13, 2024
    Assignee: Intel Corporation
    Inventors: Robert Alan May, Kristof Darmawikarta, Sri Ranga Sai Sai Boyapati
  • Patent number: 11901248
    Abstract: Various examples provide a semiconductor patch. The patch includes a glass core having first and second opposed major surfaces extending in an x-y direction. The patch further includes a conductive via extending from the first major surface to the second major surface substantially in a z-direction. The patch further includes a bridge die embedded in a dielectric material in communication with the conductive via. The patch further includes an overmold at least partially encasing the glass core.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: February 13, 2024
    Assignee: Intel Corporation
    Inventors: Robert L. Sankman, Rahul N. Manepalli, Robert Alan May, Srinivas Venkata Ramanuja Pietambaram, Bharat P. Penmecha
  • Patent number: 11894311
    Abstract: A microelectronic device is formed to include an embedded die substrate on an interposer; where the embedded die substrate is formed with no more than a single layer of transverse routing traces. In the device, all additional routing may be allocated to the interposer to which the embedded die substrate is attached. The embedded die substrate may be formed with a planarized dielectric formed over an initial metallization layer supporting the embedded die.
    Type: Grant
    Filed: April 8, 2022
    Date of Patent: February 6, 2024
    Assignee: Intel Corporation
    Inventors: Robert Alan May, Islam A. Salama, Sri Ranga Sai Boyapati, Sheng Li, Kristof Darmawikarta, Robert L. Sankman, Amruthavalli Pallavi Alur
  • Publication number: 20240030142
    Abstract: Microelectronic assemblies, related devices and methods, are disclosed herein. In some embodiments, a microelectronic component may include a substrate having a first face and an opposing second face, wherein the substrate includes a through-substrate via (TSV); a first mold material region at the first face, wherein the first mold material region includes a first through-mold via (TMV) conductively coupled to the TSV; and a second mold material region at the second face, wherein the second mold material region includes a second TMV conductively coupled to the TSV.
    Type: Application
    Filed: October 2, 2023
    Publication date: January 25, 2024
    Applicant: Intel Corporation
    Inventors: Sanka Ganesan, Ram Viswanath, Xavier Francois Brun, Tarek A. Ibrahim, Jason M. Gamba, Manish Dubey, Robert Alan May
  • Patent number: 11862619
    Abstract: Techniques for a patch to couple one or more surface dies to an interposer or motherboard are provided. In an example, the patch can include multiple embedded dies. In an example, a microelectronic device can be formed to include a patch on an interposer, where the patch can include multiple embedded dies and each die can have a different thickness.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: January 2, 2024
    Assignee: Intel Corporation
    Inventors: Srinivas Pietambaram, Robert Alan May, Kristof Darmawikarta, Hiroki Tanaka, Rahul N. Manepalli, Sri Ranga Sai Boyapati
  • Publication number: 20230420412
    Abstract: Embodiments of a microelectronic assembly comprise a microelectronic assembly, comprising: a package substrate; an interposer coupled to the package substrate, the interposer comprising a dielectric material, a conductive pillar) through the dielectric material and a conductive structure at least partially surrounding the conductive pillar, the conductive structure separated from the conductive pillar by the dielectric material; and an integrated circuit (IC) die coupled to the interposer on a side opposite to the package substrate. The conductive pillar conductively couples the IC die to the package substrate, and the conductive structure is coupled to a ground connection.
    Type: Application
    Filed: June 23, 2022
    Publication date: December 28, 2023
    Applicant: Intel Corporation
    Inventors: Hiroki Tanaka, Kristof Kuwawi Darmawikarta, Robert Alan May, Sri Ranga Sai Boyapati, Srinivas V. Pietambaram
  • Patent number: 11817390
    Abstract: Microelectronic assemblies, related devices and methods, are disclosed herein. In some embodiments, a microelectronic component may include a substrate having a first face and an opposing second face, wherein the substrate includes a through-substrate via (TSV); a first mold material region at the first face, wherein the first mold material region includes a first through-mold via (TMV) conductively coupled to the TSV; and a second mold material region at the second face, wherein the second mold material region includes a second TMV conductively coupled to the TSV.
    Type: Grant
    Filed: December 29, 2022
    Date of Patent: November 14, 2023
    Assignee: Intel Corporation
    Inventors: Sanka Ganesan, Ram Viswanath, Xavier Francois Brun, Tarek A. Ibrahim, Jason M. Gamba, Manish Dubey, Robert Alan May
  • Patent number: 11784128
    Abstract: A die interconnect substrate comprises a bridge die comprising at least one bridge interconnect connecting a first bridge die pad of the bridge die to a second bridge die pad of the bridge die. The die interconnect substrate comprises a multilayer substrate structure comprising a substrate interconnect. The bridge die is embedded in the multilayer substrate structure. The substrate interconnect extends from a level above the bridge die to a level below the bridge die. The multilayer substrate structure further comprises an electrically insulating layer comprising a first electrically insulating material. The multilayer substrate structure further comprises an electrically insulating filler structure located laterally between the bridge die and the electrically insulating layer, wherein the electrically insulating filler structure comprises a second electrically insulating material different from the first electrically insulating material.
    Type: Grant
    Filed: June 23, 2021
    Date of Patent: October 10, 2023
    Assignee: Intel Corporation
    Inventors: Robert Alan May, Kristof Darmawikarta, Sri Ranga Sai Sai Boyapati
  • Patent number: 11764158
    Abstract: An embedded multi-die interconnect bridge apparatus and method includes photolithographically formed interconnects coupled to laser-drilled interconnects. Several structures in the embedded multi-die interconnect bridge apparatus exhibit characteristic planarization during fabrication and assembly.
    Type: Grant
    Filed: May 3, 2021
    Date of Patent: September 19, 2023
    Assignee: Intel Corporation
    Inventors: Amruthavalli Pallavi Alur, Sri Ranga Sai Boyapati, Robert Alan May, Islam A. Salama, Robert L. Sankman
  • Patent number: 11699648
    Abstract: A package assembly includes a substrate and at least a first die having a first contact array and a second contact array. First and second via assemblies are respectively coupled with the first and second contact arrays. Each of the first and second via assemblies includes a base pad, a cap assembly, and a via therebetween. One or more of the cap assembly or the via includes an electromigration resistant material to isolate each of the base pad and the cap assembly. Each first cap assembly and via of the first via assemblies has a first assembly profile less than a second assembly profile of each second cap assembly and via of the second via assemblies. The first and second cap assemblies have a common applied thickness in an application configuration. The first and second cap assemblies have a thickness variation of ten microns or less in a reflowed configuration.
    Type: Grant
    Filed: March 9, 2022
    Date of Patent: July 11, 2023
    Assignee: Tahoe Research, Ltd.
    Inventors: Srinivas V. Pietambaram, Jung Kyu Han, Ali Lehaf, Steve Cho, Thomas Heaton, Hiroki Tanaka, Kristof Darmawikarta, Robert Alan May, Sri Ranga Sai Boyapati
  • Patent number: 11688692
    Abstract: Microelectronic assemblies, related devices and methods, are disclosed herein. In some embodiments, a microelectronic assembly may include a package substrate having a first surface and an opposing second surface; a microelectronic component embedded in the package substrate, the microelectronic component including: a substrate having a surface, where the substrate includes a conductive pathway and a mold material region at the surface, where the mold material region includes a through-mold via (TMV) electrically coupled to the conductive pathway, and where the mold material region is at the second surface of the package substrate; and a die conductively coupled, at the second surface of the package substrate, to the package substrate and to the TMV of the microelectronic component.
    Type: Grant
    Filed: December 1, 2021
    Date of Patent: June 27, 2023
    Assignee: Intel Corporation
    Inventors: Praneeth Kumar Akkinepally, Frank Truong, Jason M. Gamba, Robert Alan May