Patents by Inventor Robert Alan May

Robert Alan May has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210391263
    Abstract: Disclosed herein are microelectronic structures including bridges, as well as related assemblies and methods. In some embodiments, a microelectronic structure may include a substrate and a bridge.
    Type: Application
    Filed: June 16, 2020
    Publication date: December 16, 2021
    Applicant: Intel Corporation
    Inventors: Bai Nie, Gang Duan, Omkar G. Karhade, Nitin A. Deshpande, Yikang Deng, Wei-Lun Jen, Tarek A. Ibrahim, Sri Ranga Sai Boyapati, Robert Alan May, Yosuke Kanaoka, Robin Shea McRee, Rahul N. Manepalli
  • Publication number: 20210358872
    Abstract: Semiconductor packages having a die electrically connected to an antenna by a coaxial interconnect are described. In an example, a semiconductor package includes a molded layer between a first antenna patch and a second antenna patch of the antenna. The first patch may be electrically connected to the coaxial interconnect, and the second patch may be mounted on the molded layer. The molded layer may be formed from a molding compound, and may have a stiffness to resist warpage during fabrication and use of the semiconductor package.
    Type: Application
    Filed: July 28, 2021
    Publication date: November 18, 2021
    Inventors: Srinivas V. PIETAMBARAM, Rahul N. MANEPALLI, Kristof Kuwawi DARMAWIKARTA, Robert Alan MAY, Aleksandar ALEKSOV, Telesphor KAMGAING
  • Publication number: 20210320066
    Abstract: A die interconnect substrate comprises a bridge die comprising at least one bridge interconnect connecting a first bridge die pad of the bridge die to a second bridge die pad of the bridge die. The die interconnect substrate comprises a multilayer substrate structure comprising a substrate interconnect. The bridge die is embedded in the multilayer substrate structure. The substrate interconnect extends from a level above the bridge die to a level below the bridge die. The multilayer substrate structure further comprises an electrically insulating layer comprising a first electrically insulating material. The multilayer substrate structure further comprises an electrically insulating filler structure located laterally between the bridge die and the electrically insulating layer, wherein the electrically insulating filler structure comprises a second electrically insulating material different from the first electrically insulating material.
    Type: Application
    Filed: June 23, 2021
    Publication date: October 14, 2021
    Inventors: Robert Alan MAY, Kristof DARMAWIKARTA, Sri Ranga Sai Sai BOYAPATI
  • Publication number: 20210305163
    Abstract: Microelectronic assemblies, related devices and methods, are disclosed herein. In some embodiments, a microelectronic assembly may include a package substrate having a first surface and an opposing second surface; a microelectronic component embedded in the package substrate, the microelectronic component including: a substrate having a surface, where the substrate includes a conductive pathway and a mold material region at the surface, where the mold material region includes a through-mold via (TMV) electrically coupled to the conductive pathway, and where the mold material region is at the second surface of the package substrate; and a die conductively coupled, at the second surface of the package substrate, to the package substrate and to the TMV of the microelectronic component.
    Type: Application
    Filed: March 27, 2020
    Publication date: September 30, 2021
    Applicant: Intel Corporation
    Inventors: Praneeth Kumar Akkinepally, Frank Truong, Jason M. Gamba, Robert Alan May
  • Publication number: 20210305162
    Abstract: Microelectronic assemblies, related devices and methods, are disclosed herein. In some embodiments, a microelectronic component may include a substrate having a first face and an opposing second face, wherein the substrate includes a through-substrate via (TSV); a first mold material region at the first face, wherein the first mold material region includes a first through-mold via (TMV) conductively coupled to the TSV; and a second mold material region at the second face, wherein the second mold material region includes a second TMV conductively coupled to the TSV.
    Type: Application
    Filed: March 25, 2020
    Publication date: September 30, 2021
    Applicant: Intel Corporation
    Inventors: Sanka Ganesan, Ram Viswanath, Xavier Francois Brun, Tarek A. Ibrahim, Jason M. Gamba, Manish Dubey, Robert Alan May
  • Publication number: 20210305108
    Abstract: Various examples provide a semiconductor patch. The patch includes a glass core having first and second opposed major surfaces extending in an x-y direction. The patch further includes a conductive via extending from the first major surface to the second major surface substantially in a z-direction. The patch further includes a bridge die embedded in a dielectric material in communication with the conductive via. The patch further includes an overmold at least partially encasing the glass core.
    Type: Application
    Filed: March 27, 2020
    Publication date: September 30, 2021
    Inventors: Robert L. Sankman, Rahul N. Manepalli, Robert Alan May, Srinivas Venkata Ramanuja Pietambaram, Bharat P. Penmecha
  • Publication number: 20210280517
    Abstract: A device and method for providing enhanced bridge structures is disclosed. A set of conducting and insulating layers are deposited and lithographically processed. The conducting layers have uFLS routing. A bridge with uFLS contacts and die disposed on the underlying structure such that the die are connected with the uFLS contacts and uFLS routing. For core-based structures, the layers are formed after the bridge is placed on the underlying structure and the die connected to the bridge through intervening conductive layers. For coreless structures, the layers are formed over the bridge and carrier, which is removed prior to bonding the die to the bridge, and the die bonded directly to the bridge.
    Type: Application
    Filed: September 30, 2016
    Publication date: September 9, 2021
    Inventors: Robert Alan May, Wei-Lun Kane Jen, Jonathan L. Rosch, Islam A. Salama, Kristof Darmawikarta
  • Patent number: 11107780
    Abstract: An integrated-circuit package substrate includes a pseudo-stripline that is shielded below a lower solder-resist layer and an upper solder-resist layer, where an upper shielding plane is sandwiched between the lower and upper solder-resist layers. The lower solder-resist layer can at least partially overlap a landing-pad region of a landing-pad via that penetrates a top build-up layer which is contacted by the lower solder-resist layer.
    Type: Grant
    Filed: June 7, 2019
    Date of Patent: August 31, 2021
    Assignee: Intel Corporation
    Inventors: Lilia May, Robert Alan May, Amruthavalli Pallavi Alur, Robert L. Sankman
  • Patent number: 11107781
    Abstract: Semiconductor packages having a die electrically connected to an antenna by a coaxial interconnect are described. In an example, a semiconductor package includes a molded layer between a first antenna patch and a second antenna patch of the antenna. The first patch may be electrically connected to the coaxial interconnect, and the second patch may be mounted on the molded layer. The molded layer may be formed from a molding compound, and may have a stiffness to resist warpage during fabrication and use of the semiconductor package.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: August 31, 2021
    Assignee: Intel Corporation
    Inventors: Srinivas V. Pietambaram, Rahul N. Manepalli, Kristof Kuwawi Darmawikarta, Robert Alan May, Aleksandar Aleksov, Telesphor Kamgaing
  • Publication number: 20210257303
    Abstract: An embedded multi-die interconnect bridge apparatus and method includes photolithographically formed interconnects coupled to laser-drilled interconnects. Several structures in the embedded multi-die interconnect bridge apparatus exhibit characteristic planarization during fabrication and assembly.
    Type: Application
    Filed: May 3, 2021
    Publication date: August 19, 2021
    Inventors: Amruthavalli Pallavi ALUR, Sri Ranga Sai BOYAPATI, Robert Alan MAY, Islam A. SALAMA, Robert L. SANKMAN
  • Patent number: 11075130
    Abstract: Semiconductor packages including package substrates having polymer-derived ceramic cores are described. In an example, a package substrate includes a core layer including a polymer-derived ceramic. The polymer-derived ceramic may include filler particles to control shrinkage and reduce warpage of the core layer during fabrication and use of the package substrate. The core layer may include counterbores or blind holes to embed a contact pad or an electrical interconnect in the core layer. A semiconductor die may be mounted on the package substrate and may be electrically connected to the contact pad or the electrical interconnect.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: July 27, 2021
    Assignee: Intel Corporation
    Inventors: Lisa Ying Ying Chen, Lauren Ashley Link, Robert Alan May, Amruthavalli Pallavi Alur, Kristof Kuwawi Darmawikarta, Siddharth K. Alur, Sri Ranga Sai Boyapati, Andrew James Brown, Lilia May
  • Patent number: 11069620
    Abstract: A die interconnect substrate comprises a bridge die comprising at least one bridge interconnect connecting a first bridge die pad of the bridge die to a second bridge die pad of the bridge die. The die interconnect substrate comprises a multilayer substrate structure comprising a substrate interconnect. The bridge die is embedded in the multilayer substrate structure. The substrate interconnect extends from a level above the bridge die to a level below the bridge die. The multilayer substrate structure further comprises an electrically insulating layer comprising a first electrically insulating material. The multilayer substrate structure further comprises an electrically insulating filler structure located laterally between the bridge die and the electrically insulating layer, wherein the electrically insulating filler structure comprises a second electrically insulating material different from the first electrically insulating material.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: July 20, 2021
    Assignee: Intel Corporation
    Inventors: Robert Alan May, Kristof Darmawikarta, Sri Ranga Sai Sai Boyapati
  • Patent number: 11043457
    Abstract: An embedded multi-die interconnect bridge apparatus and method includes photolithographically formed interconnects coupled to laser-drilled interconnects. Several structures in the embedded multi-die interconnect bridge apparatus exhibit characteristic planarization during fabrication and assembly.
    Type: Grant
    Filed: June 1, 2020
    Date of Patent: June 22, 2021
    Assignee: Intel Corporation
    Inventors: Amruthavalli Pallavi Alur, Sri Ranga Sai Boyapati, Robert Alan May, Islam A. Salama, Robert L. Sankman
  • Patent number: 11037802
    Abstract: Integrated circuit (IC) package substrates having high density interconnects with a sputter seed layer containing a copper alloy, as well as related structures, devices, and methods, are disclosed herein. For example, in some embodiments, a package substrate may include a first dielectric layer, a sputter seed layer disposed on the first dielectric layer, wherein the seed layer includes a copper alloy, a patterned conductive layer disposed on the seed layer, and a second dielectric layer over the patterned conductive layer.
    Type: Grant
    Filed: December 28, 2016
    Date of Patent: June 15, 2021
    Assignee: Intel Corporation
    Inventors: Robert Alan May, Kristof Kuwawi Darmawikarta, Sri Ranga Sai Boyapati, Sandeep Gaan, Srinivas V. Pietambaram
  • Publication number: 20210134723
    Abstract: A die interconnect substrate comprises a bridge die comprising at least one bridge interconnect connecting a first bridge die pad of the bridge die to a second bridge die pad of the bridge die. The die interconnect substrate comprises a multilayer substrate structure comprising a substrate interconnect. The bridge die is embedded in the multilayer substrate structure. The substrate interconnect extends from a level above the bridge die to a level below the bridge die. The multilayer substrate structure further comprises an electrically insulating layer comprising a first electrically insulating material. The multilayer substrate structure further comprises an electrically insulating filler structure located laterally between the bridge die and the electrically insulating layer, wherein the electrically insulating filler structure comprises a second electrically insulating material different from the first electrically insulating material.
    Type: Application
    Filed: March 31, 2017
    Publication date: May 6, 2021
    Inventors: Robert Alan MAY, Kristof DARMAWIKARTA, Sri Ranga Sai Sai BOYAPATI
  • Patent number: 10978399
    Abstract: A die interconnect substrate comprises a bridge die comprising at least one bridge interconnect connecting a first bridge die pad of the bridge die to a second bridge die pad of the bridge die. The die interconnect substrate comprises a multilayer substrate structure comprising a substrate interconnect, wherein the bridge die is embedded in the multilayer substrate structure. The die interconnect substrate comprises a via portion formed on the first bridge die pad of the bridge die. An average angle between a surface of the first bridge die pad and a sidewall of the via portion lies between 85° and 95°.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: April 13, 2021
    Assignee: Intel Corporation
    Inventors: Kristof Darmawikarta, Robert Alan May, Sri Ranga Sai Sai Boyapati, Wei-Lun Kane Jen, Javier Soto Gonzalez
  • Publication number: 20210066232
    Abstract: Integrated circuit package substrates with high-density interconnect architecture for scaling high-density routing, as well as related structures, devices, and methods, are generally presented. More specifically, integrated circuit package substrates with fan out routing based on a high-density interconnect layer that may include pillars and vias, and integrated cavities for die attachment are presented. Additionally, integrated circuit package substrates with self-aligned pillars and vias formed on the high-density interconnect layer as well as related methods are presented.
    Type: Application
    Filed: November 16, 2020
    Publication date: March 4, 2021
    Applicant: Intel Corporation
    Inventors: Robert Alan May, Sri Ranga Sai Boyapati, Kristof Kuwawi Darmawikarta, Srinivas V. Pietambaram, Javier Soto Gonzalez, Kwangmo Chris Lim, Aleksandar Aleksov
  • Patent number: 10916486
    Abstract: Various embodiments disclosed relate to semiconductor device and method of making the same using functional silanes. In various embodiments, the present invention provides a semiconductor device including a silicon die component having a first silica surface. The semiconductor device includes a dielectric layer having a second surface generally facing the first silica surface. The semiconductor device includes an interface defined between the first surface and the second surface. The semiconductor device also includes a silane based adhesion promoter layer disposed within the junction and bonded to at least one of the first silica surface and the dielectric layer second surface.
    Type: Grant
    Filed: September 26, 2016
    Date of Patent: February 9, 2021
    Assignee: Intel Corporation
    Inventors: Andrew J. Brown, Chi-Mon Chen, Robert Alan May, Amanda E. Schuckman, Wei-Lun Kane Jen
  • Publication number: 20210035901
    Abstract: A package assembly includes a substrate and at least a first die having a first contact array and a second contact array. First and second via assemblies are respectively coupled with the first and second contact arrays. Each of the first and second via assemblies includes a base pad, a cap assembly, and a via therebetween. One or more of the cap assembly or the via includes an electromigration resistant material to isolate each of the base pad and the cap assembly. Each first cap assembly and via of the first via assemblies has a first assembly profile less than a second assembly profile of each second cap assembly and via of the second via assemblies. The first and second cap assemblies have a common applied thickness in an application configuration. The first and second cap assemblies have a thickness variation of ten microns or less in a reflowed configuration.
    Type: Application
    Filed: October 20, 2020
    Publication date: February 4, 2021
    Inventors: Srinivas V. PIETAMBARAM, Jung Kyu HAN, Ali LEHAF, Steve CHO, Thomas HEATON, Hiroki TANAKA, Kristof DARMAWIKARTA, Robert Alan MAY, Sri Ranga Sai BOYAPATI
  • Patent number: 10872872
    Abstract: Integrated circuit package substrates with high-density interconnect architecture for scaling high-density routing, as well as related structures, devices, and methods, are generally presented. More specifically, integrated circuit package substrates with fan out routing based on a high-density interconnect layer that may include pillars and vias, and integrated cavities for die attachment are presented. Additionally, integrated circuit package substrates with self-aligned pillars and vias formed on the high-density interconnect layer as well as related methods are presented.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: December 22, 2020
    Assignee: Intel Corporation
    Inventors: Robert Alan May, Sri Ranga Sai Boyapati, Kristof Kuwawi Darmawikarta, Srinivas V. Pietambaram, Javier Soto Gonzalez, Kwangmo Chris Lim, Aleksandar Aleksov