Patents by Inventor Robert B. Lefferts
Robert B. Lefferts has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20230023073Abstract: An integrated circuit (IC) chip may include a first gate-all-around (GAA) device and a second GAA device. The first GAA device may include a first set of silicon dioxide structures around a first set of silicon channels, a first set of hafnium dioxide structures around the first set of silicon dioxide structures, and a first metal structure around the first set of hafnium dioxide structures. The second GAA device may include a second set of silicon dioxide structures around a second set of silicon channels, and a second metal structure around the second set of silicon dioxide structures. Each silicon dioxide structure in the first set of silicon dioxide structures may have a first thickness. Each silicon dioxide structure in the second set of silicon dioxide structures may have a second thickness, which is greater than the first thickness.Type: ApplicationFiled: July 21, 2022Publication date: January 26, 2023Applicant: Synopsys, Inc.Inventors: Victor Moroz, Robert B. Lefferts, Xi-Wei Lin, Munkang Choi
-
Patent number: 11334705Abstract: A system and method for providing electrical circuit design using cells with metal lines are described herein. According to one embodiment, a method includes instantiating a first parameterized cell (PCELL) into a first region of a row of an electrical circuit design. The first PCELL includes field effect transistor (FET) data representing a FET structure having a horizontal dimension and first metal track data representing a first set of adjustable parallel metal line segments extending along the horizontal dimension of the FET structure. The method also includes instantiating a second PCELL into a second region of the row adjacent to the first region. The second PCELL includes second metal track data representing a second set of adjustable parallel metal line segments. The method further includes connecting the first set of adjustable parallel metal line segments to the second set of adjustable parallel metal line segments and eliminating a connectivity short.Type: GrantFiled: December 7, 2020Date of Patent: May 17, 2022Assignee: Synopsys, Inc.Inventors: Robert B. Lefferts, Naveen John, Luis Jose H. Alves, Amanda J. Woon-Fat, Neelakantan Gopalan, Menaka Chandramohan
-
Publication number: 20210173999Abstract: A system and method for providing electrical circuit design using cells with metal lines are described herein. According to one embodiment, a method includes instantiating a first parameterized cell (PCELL) into a first region of a row of an electrical circuit design. The first PCELL includes field effect transistor (FET) data representing a FET structure having a horizontal dimension and first metal track data representing a first set of adjustable parallel metal line segments extending along the horizontal dimension of the FET structure. The method also includes instantiating a second PCELL into a second region of the row adjacent to the first region. The second PCELL includes second metal track data representing a second set of adjustable parallel metal line segments. The method further includes connecting the first set of adjustable parallel metal line segments to the second set of adjustable parallel metal line segments and eliminating a connectivity short.Type: ApplicationFiled: December 7, 2020Publication date: June 10, 2021Inventors: Robert B. LEFFERTS, Naveen JOHN, Luis Jose H. ALVES, Amanda J. WOON-FAT, Neelakantan GOPALAN, Menaka CHANDRAMOHAN
-
Patent number: 10741538Abstract: In one well bias arrangement, no well bias voltage is applied to the n-well, and no well bias voltage is applied to the p-well. Because no external well bias voltage is applied, the n-well and the p-well are floating, even during operation of the devices in the n-well and the p-well. In another well bias arrangement, the lowest available voltage is not applied to the p-well, such as a ground voltage, or the voltage applied to the n+-doped source region of the n-type transistor in the p-well. This occurs even during operation of the n-type transistor in the p-well. In yet another well bias arrangement, the highest available voltage is not applied to the n-well, such as a supply voltage, or the voltage applied to the p+-doped source region of the p-type transistor in the n-well. This occurs even during operation of the p-type transistor in the n-well.Type: GrantFiled: July 28, 2017Date of Patent: August 11, 2020Assignee: Synopsys, Inc.Inventors: Victor Moroz, Jamil Kawa, James D. Sproch, Robert B. Lefferts
-
Patent number: 10339249Abstract: Systems and techniques for facilitating layout of an integrated circuit (IC) design are described. A distinct color pattern can be assigned to a set of shapes in a layout of the IC design that correspond to a net. Next, the layout of the IC design can be displayed in a graphical user interface (GUI) of the IC design tool. Some embodiments can move a diffusion region of a multigate device with respect to the location of the device contacts so that the diffusion region is aligned with respect to a set of fin tracks, wherein each fin of each multigate device is located on a fin track.Type: GrantFiled: March 29, 2016Date of Patent: July 2, 2019Assignee: Synopsys, Inc.Inventor: Robert B. Lefferts
-
Publication number: 20170330872Abstract: In one well bias arrangement, no well bias voltage is applied to the n-well, and no well bias voltage is applied to the p-well. Because no external well bias voltage is applied, the n-well and the p-well are floating, even during operation of the devices in the n-well and the p-well. In another well bias arrangement, the lowest available voltage is not applied to the p-well, such as a ground voltage, or the voltage applied to the n+-doped source region of the n-type transistor in the p-well. This occurs even during operation of the n-type transistor in the p-well. In yet another well bias arrangement, the highest available voltage is not applied to the n-well, such as a supply voltage, or the voltage applied to the p+-doped source region of the p-type transistor in the n-well. This occurs even during operation of the p-type transistor in the n-well.Type: ApplicationFiled: July 28, 2017Publication date: November 16, 2017Applicant: Synopsys, Inc.Inventors: Victor Moroz, Jamil Kawa, James D. Sproch, Robert B. Lefferts
-
Publication number: 20170286584Abstract: Systems and techniques for facilitating layout of an integrated circuit (IC) design are described. A distinct color pattern can be assigned to a set of shapes in a layout of the IC design that correspond to a net. Next, the layout of the IC design can be displayed in a graphical user interface (GUI) of the IC design tool. Some embodiments can move a diffusion region of a multigate device with respect to the location of the device contacts so that the diffusion region is aligned with respect to a set of fin tracks, wherein each fin of each multigate device is located on a fin track.Type: ApplicationFiled: March 29, 2016Publication date: October 5, 2017Applicant: Synopsys, Inc.Inventor: Robert B. Lefferts
-
Patent number: 9728528Abstract: In one well bias arrangement, no well bias voltage is applied to the n-well, and no well bias voltage is applied to the p-well. Because no external well bias voltage is applied, the n-well and the p-well are floating, even during operation of the devices in the n-well and the p-well. In another well bias arrangement, the lowest available voltage is not applied to the p-well, such as a ground voltage, or the voltage applied to the n+-doped source region of the n-type transistor in the p-well. This occurs even during operation of the n-type transistor in the p-well. In yet another well bias arrangement, the highest available voltage is not applied to the n-well, such as a supply voltage, or the voltage applied to the p+-doped source region of the p-type transistor in the n-well. This occurs even during operation of the p-type transistor in the n-well.Type: GrantFiled: December 9, 2014Date of Patent: August 8, 2017Assignee: SYNOPSYS, INC.Inventors: Victor Moroz, Jamil Kawa, James D. Sproch, Robert B. Lefferts
-
Patent number: 9287253Abstract: In one well bias arrangement, no well bias voltage is applied to the n-well, and no well bias voltage is applied to the p-well. Because no external well bias voltage is applied, the n-well and the p-well are floating, even during operation of the devices in the n-well and the p-well. In another well bias arrangement, the lowest available voltage is not applied to the p-well, such as a ground voltage, or the voltage applied to the n+-doped source region of the n-type transistor in the p-well. This occurs even during operation of the n-type transistor in the p-well. In yet another well bias arrangement, the highest available voltage is not applied to the n-well, such as a supply voltage, or the voltage applied to the p+-doped source region of the p-type transistor in the n-well. This occurs even during operation of the p-type transistor in the n-well.Type: GrantFiled: December 22, 2011Date of Patent: March 15, 2016Assignee: Synopsys, Inc.Inventors: Victor Moroz, Jamil Kawa, James D. Sproch, Robert B. Lefferts
-
Publication number: 20150162320Abstract: In one well bias arrangement, no well bias voltage is applied to the n-well, and no well bias voltage is applied to the p-well. Because no external well bias voltage is applied, the n-well and the p-well are floating, even during operation of the devices in the n-well and the p-well. In another well bias arrangement, the lowest available voltage is not applied to the p-well, such as a ground voltage, or the voltage applied to the n+-doped source region of the n-type transistor in the p-well. This occurs even during operation of the n-type transistor in the p-well. In yet another well bias arrangement, the highest available voltage is not applied to the n-well, such as a supply voltage, or the voltage applied to the p+-doped source region of the p-type transistor in the n-well. This occurs even during operation of the p-type transistor in the n-well.Type: ApplicationFiled: December 9, 2014Publication date: June 11, 2015Applicant: SYNOPSYS, INC.Inventors: Victor Moroz, Jamil Kawa, James D. Sproch, Robert B. Lefferts
-
Patent number: 8976497Abstract: An electrostatic discharge (ESD) device implemented within a power domain to mitigate ESD events imparted from another power domain for reducing integrated circuit (IC) failures. A first power domain includes an interface where ESD events are received and an output that can impart ESD event voltages on other components. A second power domain includes an ESD device coupled to the output of the first power domain and a protected IC. In one embodiment, the ESD device includes a floating device with an input terminal coupled to the interface output. By floating the device receiving the ESD event in the second power domain, damaging ESD induced voltages are reduced. Embodiments of the ESD device can be implemented using standard cell libraries to simplify integration.Type: GrantFiled: May 22, 2012Date of Patent: March 10, 2015Assignee: Synopsys, Inc.Inventors: Robert B. Lefferts, Peter C. de Jong, Roland G. de Jonge
-
Patent number: 8958186Abstract: An electrostatic discharge (ESD) device is implemented within a power domain to mitigate imparting ESD induced voltages on other power domains for reducing integrated circuit (IC) failures. A first power domain includes an interface with a first terminal where an ESD event is received. The interface includes a second terminal coupled to a component within a second power domain. The ESD device is disposed between the first terminal and second terminal to intercept the ESD event. In one embodiment, the ESD device includes a blocking device. The blocking device operatively decouples the first terminal and second terminal in response to a trigger signal received during an ESD event. By operatively decoupling the terminals, transmission of the ESD induced voltages is substantially mitigated. Embodiments of the ESD device can be implemented using standard cell libraries to simplify integration.Type: GrantFiled: October 2, 2012Date of Patent: February 17, 2015Assignee: Synopsys, Inc.Inventors: Robert B. Lefferts, Peter C. de Jong, Roland G. de Jonge
-
Publication number: 20140092507Abstract: An electrostatic discharge (ESD) device is implemented within a power domain to mitigate imparting ESD induced voltages on other power domains for reducing integrated circuit (IC) failures. A first power domain includes an interface with a first terminal where an ESD event is received. The interface includes a second terminal coupled to a component within a second power domain. The ESD device is disposed between the first terminal and second terminal to intercept the ESD event. In one embodiment, the ESD device includes a blocking device. The blocking device operatively decouples the first terminal and second terminal in response to a trigger signal received during an ESD event. By operatively decoupling the terminals, transmission of the ESD induced voltages is substantially mitigated. Embodiments of the ESD device can be implemented using standard cell libraries to simplify integration.Type: ApplicationFiled: October 2, 2012Publication date: April 3, 2014Applicant: SYNOPSYS, INC.Inventors: Robert B. Lefferts, Peter C. de Jong, Roland G. de Jonge
-
Publication number: 20130314824Abstract: An electrostatic discharge (ESD) device implemented within a power domain to mitigate ESD events imparted from another power domain for reducing integrated circuit (IC) failures. A first power domain includes an interface where ESD events are received and an output that can impart ESD event voltages on other components. A second power domain includes an ESD device coupled to the output of the first power domain and a protected IC. In one embodiment, the ESD device includes a floating device with an input terminal coupled to the interface output. By floating the device receiving the ESD event in the second power domain, damaging ESD induced voltages are reduced. Embodiments of the ESD device can be implemented using standard cell libraries to simplify integration.Type: ApplicationFiled: May 22, 2012Publication date: November 28, 2013Applicant: Synopsys, Inc.Inventors: Robert B. Lefferts, Peter C. de Jong, Roland G. de Jonge
-
Publication number: 20130113547Abstract: In one well bias arrangement, no well bias voltage is applied to the n-well, and no well bias voltage is applied to the p-well. Because no external well bias voltage is applied, the n-well and the p-well are floating, even during operation of the devices in the n-well and the p-well. In another well bias arrangement, the lowest available voltage is not applied to the p-well, such as a ground voltage, or the voltage applied to the n+-doped source region of the n-type transistor in the p-well. This occurs even during operation of the n-type transistor in the p-well. In yet another well bias arrangement, the highest available voltage is not applied to the n-well, such as a supply voltage, or the voltage applied to the p+-doped source region of the p-type transistor in the n-well. This occurs even during operation of the p-type transistor in the n-well.Type: ApplicationFiled: December 22, 2011Publication date: May 9, 2013Applicant: Synopsys. Inc.Inventors: Victor Moroz, Jamil Kawa, James D. Sproch, Robert B. Lefferts
-
Patent number: 8208591Abstract: Systems and techniques for adapting and/or optimizing an equalizer of a receiver are described. The equalizer's behavior can be adjusted by modifying one or more equalization parameters. At the beginning of the adaptation and/or optimization process, the system can determine robust initial values for the one or more equalization parameters. The system can then adapt and/or optimize the equalizer by iteratively adjusting the one or more equalization parameters. Specifically, in each iteration, the system can use the receiver's clock and data recovery (CDR) circuitry to determine the number of early and late data transitions associated with one or more data patterns. Next, the system can adjust the one or more equalization parameters so that, for each data pattern in the one or more data patterns, the ratio between the number of early data transitions and the number of late data transitions is substantially equal to a desired value.Type: GrantFiled: June 21, 2010Date of Patent: June 26, 2012Assignee: Synopsys, Inc.Inventors: James P. Flynn, Junqi Hua, Robert B. Lefferts, Richard H. Steeves, John T. Stonick, Daniel K. Weinlader, Jianping Wen, Skye Wolfer, David A. Yokoyama-Martin
-
Patent number: 8184757Abstract: An on-die scope is described. The on-die scope can include one or more scope slicers, phase sweeping circuitry, voltage sweeping circuitry, and eye-diagram data collection circuitry. The clock and data recovery circuitry can receive an input signal, and output a recovered clock signal and a recovered bit-stream. The phase sweeping circuitry can receive the recovered clock signal, and output the scope clock signal by adding a phase offset to the recovered clock signal. A scope slicer can receive the voltage threshold, the scope clock signal, and the input signal, and output a scope bit-stream. The eye-diagram data collection circuitry can detect one or more bit-patterns in the recovered bit-stream, and modify values of one or more scope counters based solely or partly on the scope bit-stream and the recovered bit-stream.Type: GrantFiled: June 21, 2010Date of Patent: May 22, 2012Assignee: Synopsys, Inc.Inventors: James P. Flynn, Junqi Hua, Robert B. Lefferts, Richard H. Steeves, John T. Stonick, Daniel K. Weinlader, Jianping Wen, Skye Wolfer, David A. Yokoyama-Martin
-
Publication number: 20110311009Abstract: An on-die scope is described. The on-die scope can include one or more scope slicers, phase sweeping circuitry, voltage sweeping circuitry, and eye-diagram data collection circuitry. The clock and data recovery circuitry can receive an input signal, and output a recovered clock signal and a recovered bit-stream. The phase sweeping circuitry can receive the recovered clock signal, and output the scope clock signal by adding a phase offset to the recovered clock signal. A scope slicer can receive the voltage threshold, the scope clock signal, and the input signal, and output a scope bit-stream. The eye-diagram data collection circuitry can detect one or more bit-patterns in the recovered bit-stream, and modify values of one or more scope counters based solely or partly on the scope bit-stream and the recovered bit-stream.Type: ApplicationFiled: June 21, 2010Publication date: December 22, 2011Applicant: SYNOPSYS, INC.Inventors: James P. Flynn, Junqi Hua, Robert B. Lefferts, Richard H. Steeves, John T. Stonick, Daniel K. Weinlader, Jianping Wen, Skye Wolfer, David A. Yokoyama-Martin
-
Publication number: 20110310947Abstract: Systems and techniques for adapting and/or optimizing an equalizer of a receiver are described. The equalizer's behavior can be adjusted by modifying one or more equalization parameters. At the beginning of the adaptation and/or optimization process, the system can determine robust initial values for the one or more equalization parameters. The system can then adapt and/or optimize the equalizer by iteratively adjusting the one or more equalization parameters. Specifically, in each iteration, the system can use the receiver's clock and data recovery (CDR) circuitry to determine the number of early and late data transitions associated with one or more data patterns. Next, the system can adjust the one or more equalization parameters so that, for each data pattern in the one or more data patterns, the ratio between the number of early data transitions and the number of late data transitions is substantially equal to a desired value.Type: ApplicationFiled: June 21, 2010Publication date: December 22, 2011Applicant: SYNOPSYS, INC.Inventors: James P. Flynn, Junqi Hua, Robert B. Lefferts, Richard H. Steeves, John T. Stonick, Daniel K. Weinlader, Jianping Wen, Skye Wolfer, David A. Yokoyama-Martin
-
Patent number: 7345992Abstract: The present invention relates in general to a method, apparatus, and article of manufacture for providing high-speed digital communications through a communications channel. In one aspect, the present invention employs a variable rate back channel, incorporated within an existing communication that does not increase or adversely impact the transmission rate of data on the communication channel.Type: GrantFiled: September 11, 2003Date of Patent: March 18, 2008Assignee: Synopsys, Inc.Inventors: James Gorecki, John T. Stonick, Shawn Searles, William S. Check, Jr., Robert B. Lefferts