Patents by Inventor Robert B. Staszewski

Robert B. Staszewski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8321489
    Abstract: A novel and useful apparatus for and method of software based phase locked loop (PLL). The software based PLL incorporates a reconfigurable calculation unit (RCU) that is optimized and programmed to sequentially perform all the atomic operations of a PLL or any other desired task in a time sharing manner. An application specific instruction-set processor (ASIP) incorporating the RCU includes an instruction set whose instructions are optimized to perform the atomic operations of a PLL. The RCU is clocked at a fast enough processor clock rate to insure that all PLL atomic operations are performed within a single PLL reference clock cycle.
    Type: Grant
    Filed: September 11, 2007
    Date of Patent: November 27, 2012
    Assignee: National Semiconductor Corporation
    Inventors: Roman Staszewski, Robert B. Staszewski, Fuqiang Shi
  • Patent number: 8306176
    Abstract: System and method for improving a digital PLL's performance by making fine grained adjustments to the loop gain. A preferred embodiment comprises a plurality of loop gain adjustors (such as loop gain adjustors 605, 606, 607, and 608) that can incrementally adjust the loop gain. The incrementally adjusted loop gains are sequentially brought on-line so that the loop gain of the digital PLL is slowly decreased. By slowly decreasing the loop gain, the digital PLL is less perturbed by smaller noise transients that would take time to settle. Hence, the digital PLL can quickly acquire a signal and then decrease its loop gain and hence its bandwidth when it only needs to track a signal. The reduced bandwidth also reduces the overall noise in the digital PLL that is due to the reference noise contribution.
    Type: Grant
    Filed: June 19, 2003
    Date of Patent: November 6, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Robert B. Staszewski, Dirk Leipold, Khurram Muhammad
  • Publication number: 20120263256
    Abstract: An apparatus and method of linearization of a digitally-controlled pre-power amplifier (DPA) and RF power amplifier (PA) for performing predistortion calibration to compensate for nonlinearlities in the DPA and PA circuits. A predistortion look up table (LUT) stores measured distortion compensation data that is applied to the TX data before being input to the digital-to-frequency converter (DFC), DPA and PA. The on-chip receiver, which is normally inactive during the TX burst in a half-duplex operation, demodulates the RF PA output and uses the digital I/Q RX outputs to perform calibration of the TX pre-distortion tables. A sample of the RF output signal is provided to the receiver chain. While the PA (DPA) code is increasing (or decreasing), the amplitude and phase of the recovered I/Q samples are used to determine the instantaneous value of the AM/AM and AM/PM pre-distortion from which an update to the predistortion tables may be computed.
    Type: Application
    Filed: May 25, 2012
    Publication date: October 18, 2012
    Inventors: Khurram Waheed, Robert B. Staszewski, Sameh S. Rezeq, Oren E. Eliezer
  • Patent number: 8284886
    Abstract: A system and method for low-cost performance and compliance testing of local oscillators and transmitters for wireless RF applications. A preferred embodiment comprises observing a digital signal from within an RF circuit, manipulating the signal with digital signal processing techniques, and determining if the RF circuit passes a test based upon results from the manipulating. Since the signal is clocked at a much lower frequency than an RF output of the RF circuit and the manipulation is performed digitally, testing can be performed at different stages of the production cycle and expensive test equipment can be eliminated.
    Type: Grant
    Filed: January 16, 2004
    Date of Patent: October 9, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Robert B. Staszewski, Dirk Leipold, Elida de-Obaldia
  • Publication number: 20120252382
    Abstract: A novel and useful apparatus for and method of predistortion calibration and built-in self testing (BIST) of a nonlinear digitally-controlled radio frequency (RF) power amplifier (DPA) using subharmonic mixing. The RF power amplifier output is temporarily coupled into the frequency reference (FREF) input and the phase error samples generated in the phase locked loop (PLL) are then observed and analyzed. The digital predistortion and BIST mechanisms process the phase error samples to calibrate and test the DPA in the transmitter of the Digital RF Processor (DRP). The invention enables the characterization of nonlinearities, the configuration of internal predistortion, as well as the testing of the transmitter's analog/RF circuitry, thereby eliminating commonly employed RF performance testing using high-cost test equipment and associated extended test times.
    Type: Application
    Filed: July 31, 2007
    Publication date: October 4, 2012
    Inventors: Imran Bashir, Robert B. Staszewski, Oren E. Eliezer
  • Publication number: 20120244824
    Abstract: A novel and useful apparatus for and method of minimizing the phase distortions experienced at the output of a phase locked loop (PLL) by dithering of its input frequency reference to overcome additive interference that is parasitically suffered on it. The frequency reference signal is dithered in a controlled manner using either indirect or direct coupling. The dither signal may be a single clock or is generated by switching between two or more of the existing clock signals generated, or may be produced by a dedicated pseudo-random noise generator having specific spectral properties. In indirect coupling, the dither signal is coupled through a bond wire sufficiently close in proximity to the frequency reference circuit input. This dominates the jitter inflicted onto the frequency reference signal and upconverts its spectral content to higher frequency, thus eliminating the more damaging low-frequency jitter caused by the interfering RF signal.
    Type: Application
    Filed: August 1, 2007
    Publication date: September 27, 2012
    Inventors: Manouchehr Entezari, Robert B. Staszewski, Thomas Almholt, Oren E. Eliezer
  • Patent number: 8204107
    Abstract: A novel and useful apparatus for and method of reducing phase and amplitude modulation bandwidth in polar transmitters. The bandwidth reduction mechanism of the present invention effectively reduces the phase modulation bandwidth of the polar modulation performed in the transmitter by modifying the zero-crossing trajectories in the IQ domain. This significantly reduces the phase modulation bandwidth while still meeting the output spectrum and error vector magnitude (EVM) requirements of the particular modern wideband wireless standard, such as 3G WCDMA, etc. The mechanism detects a zero crossing or a near zero crossing within a predetermined threshold of the origin and an offset vector is generated that when added to the input TX IQ data, shifts the trajectory to avoid the origin thus reducing the resultant polar modulation amplitude and phase bandwidth.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: June 19, 2012
    Assignee: National Semiconductor Corporation
    Inventors: Jingcheng Zhuang, Robert B. Staszewski, Khurram Waheed
  • Patent number: 8195103
    Abstract: A novel apparatus and method of linearization of a digitally controlled pre-power amplifier (DPA) and RF power amplifier (PA). The mechanism is operative to perform predistortion calibration to compensate for nonlinearities in the DPA and PA circuits. A predistortion look up table (LUT) stores measured distortion compensation data that is applied to the TX data before being input to the digital to frequency converter (DFC), DPA and PA. The mechanism of the invention takes advantage of the on-chip receiver, which is normally inactive during the TX burst in a half-duplex operation, to demodulate the RF PA output and use the digital I/Q RX outputs to perform calibration of the TX pre-distortion tables. Controlled RF coupling is used to provide a sample of the RF output signal that to the receiver chain. The contents of the predistortion LUT are typically updated during the PA power up or down ramp.
    Type: Grant
    Filed: February 15, 2007
    Date of Patent: June 5, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Khurram Waheed, Robert B. Staszewski, Sameh S. Rezeq, Oren E. Eliezer
  • Patent number: 8155256
    Abstract: A time to digital converter is used to determine which edge of the higher frequency clock (oversampling clock) is farther away from the edge of the lower frequency timing signal. At the same time, the oversampling clock performs sampling of the timing signal by two registers: one on the rising edge and the other on the falling edge. Then, the register of “better quality” retiming, as determined by the fractional phase detector decision, is selected to provide the retimed output.
    Type: Grant
    Filed: October 2, 2001
    Date of Patent: April 10, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Robert B. Staszewski, Kenneth J. Maggio, Dirk D. Leipold
  • Patent number: 8134411
    Abstract: A novel and useful apparatus for and method of spur reduction using computation spreading with dithering in a digital phase locked loop (DPLL) architecture. A software based PLL incorporates a reconfigurable calculation unit (RCU) that is optimized and programmed to sequentially perform all the atomic operations of a PLL or any other desired task in a time sharing manner. An application specific instruction-set processor (ASIP) incorporating the RCU is adapted to spread the computation of the atomic operations out over a PLL reference clock period wherein each computation is performed at a much higher processor clock frequency than the PLL reference clock rate. This significantly reduces the per cycle current transient generated by the computations. The frequency content of the current transients is at the higher processor clock frequency which results in a significant reduction in spurs within sensitive portions of the output spectrum.
    Type: Grant
    Filed: April 17, 2008
    Date of Patent: March 13, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Fuqiang Shi, Roman Staszewski, Robert B. Staszewski
  • Patent number: 8121214
    Abstract: A novel and useful apparatus for and method of local oscillator (LO) generation with non-integer multiplication ratio between the local oscillator and RF frequencies. The LO generation schemes presented are operative to generate I and Q square waves at a designated frequency while avoiding the well known issue of harmonic pulling. A synthesizer provides 4/3 the desired frequency fRF. This frequency is divided by two to obtain in-phase and quadrature square waves at ? fRF. The in-phase signal is divided by two again to obtain in-phase and quadrature square waves at ? fRF. The signals are then logically combined using XOR operations to obtain I and Q branch signals containing spectral spurs. Since the spurs are located in non-disturbing bands, they can be filtered out resulting in the desired output signal.
    Type: Grant
    Filed: August 23, 2007
    Date of Patent: February 21, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Nir Tal, Yossi Tsfaty, Robert B. Staszewski, Gregory Lerner
  • Publication number: 20120007687
    Abstract: A transmitter using quadrature modulation includes a rectangular to polar converter for converting data symbols into a polar form, where each polar symbol has a magnitude signal and an angle signal. Digital phase modulation circuitry includes an all digital PLL circuit for generating a phase modulated RF carrier signal responsive to the angle signal frequency control word (FCW) and a carrier frequency FCW. A digitally controlled amplifier for amplifying the phase modulated signal is controlled by a digital amplitude control circuitry for controlling the gain of the digitally controlled amplifier responsive to the magnitude signal.
    Type: Application
    Filed: September 20, 2011
    Publication date: January 12, 2012
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Robert B. Staszewski, Sameh Rezeq, Dirk Leipold
  • Publication number: 20110261871
    Abstract: An all-digital frequency synthesizer architecture is built around a digitally controlled oscillator (DCO) that is tuned in response to a digital tuning word (OTW). In exemplary embodiments: (1) a gain characteristic (KDCO) of the digitally controlled oscillator can be determined by observing a digital control word before and after a known change (?fmax) in the oscillating frequency; and (2) a portion (TUNE_TF) of the tuning word can be dithered (1202), and the resultant dithered portion (dkTF) can then be applied to a control input of switchable devices within the digitally controlled oscillator.
    Type: Application
    Filed: July 1, 2011
    Publication date: October 27, 2011
    Inventors: Robert B. Staszewski, Dirk Leipold, John Wallberg
  • Patent number: 8027657
    Abstract: A mixer 1100 with a plurality of signal paths typically requires separate clock generating hardware for each signal path. However, the redundancy of having multiple clock generating hardware significantly increases power consumption and integrated circuit area when the mixer 1100 is integrated into silicon. A method and apparatus 1125 containing a circuit for generating a set of clock signals that can be shared by the different signal paths is presented. Advantage is taken of the significant capacitance difference between different sampling capacitors in the mixer and the superposition property.
    Type: Grant
    Filed: April 12, 2002
    Date of Patent: September 27, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Robert B. Staszewski, Khurram Muhammad, Yo-Chuol Ho, Dirk Leipold
  • Patent number: 8017935
    Abstract: A method of manufacturing a parallel redundant array of single-electron devices. The method includes (a) providing a mask for diffusing a plurality of n-doped regions defined by a first set of a plurality of active regions, (b) providing a mask for disposing a plurality of polysilicon gates defined by a second set of a plurality of exposed regions, wherein an offset between a first member of the plurality of the exposed region of the first set differs in offset from a second member of the plurality of the exposed region of the second set, and (c) fabricating the parallel redundant array of single-electron devices as a function of the offset.
    Type: Grant
    Filed: August 29, 2007
    Date of Patent: September 13, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Robert B. Staszewski, Renaldi Winoto, Dirk Leipold
  • Patent number: 8000670
    Abstract: System and method for elimination of close-in interferers through feedback. A preferred embodiment comprises an interferer predictor (for example, interferer predictor 840) coupled to a digital output of a direct RF radio receiver (for example, radio receiver 800). The interferer predictor predicts the presence of interferers and feeds the information back to a sampling unit (for example, sampling unit 805) through a feedback circuit (for example, feedback unit 845) through the use of charge sharing. The interferers are then eliminated in the sampling unit. Additionally, the number and placement of zeroes in a filter in the sampling unit is increased and changed through the implementation of arbitrary-coefficient finite impulse response filters.
    Type: Grant
    Filed: January 25, 2006
    Date of Patent: August 16, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Robert B. Staszewski, Khurram Muhammad, Dirk Leipold
  • Patent number: 8000428
    Abstract: An all-digital frequency synthesizer architecture is built around a digitally controlled oscillator (DCO) that is tuned in response to a digital tuning word (OTW). In exemplary embodiments: (1) a gain characteristic (KDCO) of the digitally controlled oscillator can be determined by observing a digital control word before and after a known change (?fmax) in the oscillating frequency; and (2) a portion (TUNE_TF) of the tuning word can be dithered (1202), and the resultant dithered portion (dkTF) can then be applied to a control input of switchable devices within the digitally controlled oscillator.
    Type: Grant
    Filed: November 22, 2002
    Date of Patent: August 16, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Robert B. Staszewski, Dirk Leipold, John Wallberg
  • Publication number: 20110182382
    Abstract: A transmitter using quadrature modulation includes a rectangular to polar converter for converting data symbols into a polar form, where each polar symbol has a magnitude signal and an angle signal. Digital phase modulation circuitry includes an all digital PLL circuit for generating a phase modulated RF carrier signal responsive to the angle signal frequency control word (FCW) and a carrier frequency FCW. A digitally controlled amplifier for amplifying the phase modulated signal is controlled by a digital amplitude control circuitry for controlling the gain of the digitally controlled amplifier responsive to the magnitude signal.
    Type: Application
    Filed: April 6, 2011
    Publication date: July 28, 2011
    Inventors: Robert B. Staszewski, Sameh Rezeq, Dirk Leipold
  • Patent number: 7983375
    Abstract: A novel and useful variable delay digitally controlled crystal oscillator (DCXO) buffer (i.e. slicer). A conventional slicer following the DCXO is modified to introduce a controlled random variable delay into the buffered DCXO clock. The resultant output clock signal is then used as input to the TDC of an ADPLL circuit to alleviate the subharmonic mixing based deterioration caused by LO/TX coupling through the crystal pins, and to alleviate the dead-beat effects caused by the finite resolution of the TDC. Two mechanisms for introducing variable delay into the buffered DCXO output clock signal are presented: a first mechanism that creates variable delay in fine steps and a second mechanism that creates variable delay in coarse steps. In both mechanisms, switches are incorporated into the slicer circuitry and controlled using digital bit sequences which may comprise dithering signals.
    Type: Grant
    Filed: January 28, 2008
    Date of Patent: July 19, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Fikret Dulger, Robert B. Staszewski, Francis P. Cruise, Gennady Feygin
  • Patent number: 7936229
    Abstract: A novel and useful apparatus for and method of local oscillator generation employing an exception handling mechanism that permits an oscillator having a limited modulation range to handle the large modulation ranges demanded by modern wideband wireless standards such as 3G WCDMA, etc. A controllable oscillator generates an RF signal having four quadrature phases in accordance with an input command signal. An exception handler compares the frequency command information against a threshold. If it exceeds the threshold a phase jump and a residue frequency command are generated. The residue frequency command is input to an oscillator which is operative to generate an RF signal having four quadrature phases. The phase jump is input to a quadrature switch which functions to select one of the four quadrature phase signals as the output RF signal which is then fed to a digital power amplifier.
    Type: Grant
    Filed: September 10, 2007
    Date of Patent: May 3, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Siraj Akhtar, Mehmet Ipek, Robert B. Staszewski