Patents by Inventor Robert C. Petroski

Robert C. Petroski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11638676
    Abstract: Embodiments disclosed herein relate to a garment system including at least one sensor and at least one actuator that operates responsive to sensing feedback from the at least one sensor to cause a flexible compression garment to selectively constrict or selectively dilate, thereby compressing or relieving compression against at least one body part of a subject. Such selective constriction or dilation can improve muscle functioning or joint functioning during use of motion-conducive equipment, such as an exercise bike or rowing machine.
    Type: Grant
    Filed: February 10, 2020
    Date of Patent: May 2, 2023
    Assignee: VENTRK, LLC
    Inventors: Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Max N. Mankin, Nathan P. Myhrvold, Tony S. Pan, Robert C. Petroski, Elizabeth A. Sweeney, Clarence T. Tegreene, Nicholas W. Touran, Yaroslav A. Urzhumov, Lowell L. Wood, Jr., Victoria Y. H. Wood
  • Publication number: 20220367070
    Abstract: Disclosed embodiments include nuclear fission reactor cores, nuclear fission reactors, methods of operating a nuclear fission reactor, and methods of managing excess reactivity in a nuclear fission reactor.
    Type: Application
    Filed: June 12, 2022
    Publication date: November 17, 2022
    Inventors: Charles E. Ahlfeld, Thomas M. Burke, Tyler S. Ellis, John R. Gilleland, Jonatan Hejzlar, Pavel Hejzlar, Roderick A. Hyde, David G. McAlees, Jon D. McWhirter, Ashok Odedra, Robert C. Petroski, Nicholas W. Touran, Joshua C. Walter, Kevan D. Weaver, Thomas A. Weaver, Charles Whitmer, Lowell L. Wood, Jr., George B. Zimmerman
  • Patent number: 11482344
    Abstract: Disclosed embodiments include nuclear fission reactor cores, nuclear fission reactors, methods of operating a nuclear fission reactor, and methods of managing excess reactivity in a nuclear fission reactor.
    Type: Grant
    Filed: April 3, 2017
    Date of Patent: October 25, 2022
    Assignee: TERRAPOWER, LLC
    Inventors: Charles E. Ahlfeld, Thomas M. Burke, Tyler S. Ellis, John Rogers Gilleland, Jonatan Hejzlar, Pavel Hejzlar, Roderick A. Hyde, David G. McAlees, Jon D. McWhirter, Ashok Odedra, Robert C. Petroski, Nicholas W. Touran, Joshua C. Walter, Kevan D. Weaver, Thomas Allan Weaver, Charles Whitmer, Lowell L. Wood, Jr., George B. Zimmerman
  • Publication number: 20220139577
    Abstract: An anti-proliferation technique is disclosed to reduce the likelihood of nuclear proliferation due to the use fissionable fuel salts. The technique includes doping the fuel salt with one or more elements (referred to herein as activation dopants) that, upon exposure to neutrons such as would occur in the fuel salt when a reactor is in operation, undergo a nuclear reaction to, directly or indirectly, form highly active “protecting isotopes” (of the same element as the activation dopant or a different element). A sufficient mass of activation dopants is used so that the Figure of Merit (FOM) of the fuel salt is decreased to below 1.0 within some target number of days of fission. This allows the FOM of the fuel salt to be controlled so that the fuel becomes too dangerous to handle before to the creation of a significant amount of weaponizable isotopes.
    Type: Application
    Filed: January 20, 2022
    Publication date: May 5, 2022
    Inventors: Anselmo T. Cisneros, JR., Ken Czerwinski, Bassem S. El-Dasher, Brian C. Kelleher, William M. Kerlin, Kevin Kramer, Jeffery F. Latkowski, Robert C. Petroski, Joshua C. Walter
  • Patent number: 11289210
    Abstract: Disclosed embodiments include fuel ducts, fuel assemblies, methods of making fuel ducts, methods of making a fuel assembly, and methods of using a fuel assembly. An inner hollow structure has a first geometry and an outer hollow structure has a second geometry different from the first geometry. The first hollow structure is configured to expand in at least one dimension under stress and cause the first hollow structure to contact the second hollow structure. The second hollow structure distributes at least a portion of the stress of the first hollow structure.
    Type: Grant
    Filed: October 22, 2018
    Date of Patent: March 29, 2022
    Assignee: TERRAPOWER, LLC
    Inventors: Robert C. Petroski, Gary Povirk, Philip Schloss, Ashok Odedra, Michael E. Cohen
  • Patent number: 11276503
    Abstract: An anti-proliferation technique is disclosed to reduce the likelihood of nuclear proliferation due to the use fissionable fuel salts. The technique includes doping the fuel salt with one or more elements (referred to herein as activation dopants) that, upon exposure to neutrons such as would occur in the fuel salt when a reactor is in operation, undergo a nuclear reaction to, directly or indirectly, form highly active “protecting isotopes” (of the same element as the activation dopant or a different element). A sufficient mass of activation dopants is used so that the Figure of Merit (FOM) of the fuel salt is decreased to below 1.0 within some target number of days of fission. This allows the FOM of the fuel salt to be controlled so that the fuel becomes too dangerous to handle before to the creation of a significant amount of weaponizable isotopes.
    Type: Grant
    Filed: November 6, 2019
    Date of Patent: March 15, 2022
    Assignee: TerraPower, LLC
    Inventors: Anselmo T. Cisneros, Jr., Ken Czerwinski, Bassem S. El-Dasher, Brian C. Kelleher, William M. Kerlin, Kevin Kramer, Jeffery F. Latkowski, Robert C. Petroski, Joshua C. Walter
  • Patent number: 11157665
    Abstract: Illustrative embodiments provide for the operation and simulation of the operation of fission reactors, including the movement of materials within reactors. Illustrative embodiments and aspects include, without limitation, nuclear fission reactors and reactor modules, including modular nuclear fission reactors and reactor modules, nuclear fission deflagration wave reactors and reactor modules, modular nuclear fission deflagration wave reactors and modules, methods of operating nuclear reactors and modules including the aforementioned, methods of simulating operating nuclear reactors and modules including the aforementioned, and the like.
    Type: Grant
    Filed: July 13, 2016
    Date of Patent: October 26, 2021
    Assignee: TERRAPOWER, LLC
    Inventors: Jesse R. Cheatham, III, Robert C. Petroski, Nicholas W. Touran, Charles Whitmer
  • Patent number: 10987048
    Abstract: The present disclosure relates to systems, methods, and devices that may be used to incentivize inhaler use.
    Type: Grant
    Filed: August 13, 2014
    Date of Patent: April 27, 2021
    Assignee: Elwha LLC
    Inventors: Jesse R. Cheatham, III, Roderick A. Hyde, Robert C. Petroski, Lowell L. Wood, Jr., Victoria Y. H. Wood
  • Publication number: 20210095645
    Abstract: An integrated energy system includes a nuclear thermal plant situated on a nuclear site. The nuclear thermal plant produces thermal energy that is transported to a thermal energy storage system located outside the nuclear site. The thermal storage system is thermally coupled to a power generation system which is also remote to the nuclear site. By this arrangement, the nuclear thermal plant is isolated and decoupled from the power generation system. The nuclear thermal plant may supply thermal energy upwards of 800° C. or more to be stored at the thermal energy storage system until needed such as for industrial heat, power generation, or other uses. The thermal storage system is source agnostic, and one or more additional thermal energy generators, such as additional nuclear reactors, solar thermal plants, or other thermal energy generators can be coupled to a common thermal storage system and power generation system.
    Type: Application
    Filed: September 16, 2020
    Publication date: April 1, 2021
    Inventors: Jesse R. Cheatham, III, Robert A. Corbin, John R. Gilleland, Pavel Hejzlar, Kevin Kramer, Christopher A. Martin, Brian Morris, Robert C. Petroski, Philip M. Schloss, Joshua C. Walter, Mark R. Werner
  • Patent number: 10826335
    Abstract: Systems, methods, computer-readable storage mediums including computer-readable instructions and/or circuitry for control of transmission to a target device with communicating with one or more sensors in an ad-hoc sensor network may implement operations including, but not limited to: receiving electrical power via at least one structurally integrated electrically conductive element; and powering one or more sensing operations of one or more sensors via the electrical power.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: November 3, 2020
    Assignee: Elwha LLC
    Inventors: Jesse R. Cheatham, III, Matthew G. Dyor, Peter N. Glaskowsky, Kimberly D. A. Hallman, Roderick A. Hyde, Muriel Y. Ishikawa, Edward K. Y. Jung, Michael F. Koenig, Richard T. Lord, Robert W Lord, Craig J. Mundie, Nathan P. Myhrvold, Robert C. Petroski, Desney S. Tan, Lowell L. Wood, Jr.
  • Patent number: 10820855
    Abstract: The present disclosure relates to systems, methods, and devices that may be used to incentivize inhaler use.
    Type: Grant
    Filed: November 20, 2014
    Date of Patent: November 3, 2020
    Assignee: Elwha LLC
    Inventors: Jesse R. Cheatham, III, Roderick A. Hyde, Robert C. Petroski, Lowell L. Wood, Jr., Victoria Y. H. Wood
  • Publication number: 20200316365
    Abstract: Embodiments disclosed herein relate to a garment system including at least one sensor and at least one actuator that operates responsive to sensing feedback from the at least one sensor to cause a flexible compression garment to selectively constrict or selectively dilate, thereby compressing or relieving compression against at least one body part of a subject. Such selective constriction or dilation can improve muscle functioning or joint functioning during use of motion-conducive equipment, such as an exercise bike or rowing machine.
    Type: Application
    Filed: February 10, 2020
    Publication date: October 8, 2020
    Inventors: Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Max N. Mankin, Nathan P. Myhrvold, Tony S. Pan, Robert C. Petroski, Elizabeth A. Sweeney, Clarence T. Tegreene, Nicholas W. Touran, Yaroslav A. Urzhumov, Lowell L. Wood, JR., Victoria Y.H. Wood
  • Patent number: 10765817
    Abstract: Devices, systems, and methods that may be used to controllably deliver alcohol to a subject using an inhaler, wherein the inhaler may include a housing having a flow channel coupled to an ethanol-containing inhalant reservoir, an actuator configured to facilitate release of the inhalant, a constituent sensor, and a control unit. The control unit may accept parameters associated with the subject, create an inhalant delivery regime, and control operation of the actuator based at least partially on a sensed constituent level to facilitate release of an ethanol-containing inhalant from the reservoir into the flow channel in accordance with the regimen.
    Type: Grant
    Filed: February 12, 2015
    Date of Patent: September 8, 2020
    Assignee: Elwha, LLC
    Inventors: Edward S. Boyden, Roderick A. Hyde, Jordin T. Kare, Tony S. Pan, Robert C. Petroski, Elizabeth A. Sweeney, Lowell L. Wood, Jr.
  • Patent number: 10758673
    Abstract: Embodiments disclosed herein are directed to systems and methods of dispensing one or more medicaments to a subject. The systems and methods utilize at least one flexible compression garment having one or more medicament dispensers therein.
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: September 1, 2020
    Assignee: ELWHA LLC
    Inventors: Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Max N. Mankin, Nathan P. Myhrvold, Tony S. Pan, Robert C. Petroski, Elizabeth A. Sweeney, Clarence T. Tegreene, Nicholas W. Touran, Yaroslav A. Urzhumov, Lowell L. Wood, Jr., Victoria Y. H. Wood
  • Publication number: 20200211724
    Abstract: An anti-proliferation technique is disclosed to reduce the likelihood of nuclear proliferation due to the use fissionable fuel salts. The technique includes doping the fuel salt with one or more elements (referred to herein as activation dopants) that, upon exposure to neutrons such as would occur in the fuel salt when a reactor is in operation, undergo a nuclear reaction to, directly or indirectly, form highly active “protecting isotopes” (of the same element as the activation dopant or a different element). A sufficient mass of activation dopants is used so that the Figure of Merit (FOM) of the fuel salt is decreased to below 1.0 within some target number of days of fission. This allows the FOM of the fuel salt to be controlled so that the fuel becomes too dangerous to handle before to the creation of a significant amount of weaponizable isotopes.
    Type: Application
    Filed: November 6, 2019
    Publication date: July 2, 2020
    Applicant: TerraPower, LLC
    Inventors: Anselmo T. Cisneros, JR., Ken Czerwinski, Bassem S. El-Dasher, Brian C. Kelleher, William M. Kerlin, Kevin Kramer, Jeffery F. Latkowski, Robert C. Petroski, Joshua C. Walter
  • Patent number: 10668305
    Abstract: Garment systems including a flexible compression garment, at least one sensor, and at least one therapeutic stimulation delivery device operable responsive to sensing feedback from the at least one sensor, effective to provide therapeutic radiation to a body part of a subject. Methods of using such garment systems are also described.
    Type: Grant
    Filed: February 16, 2017
    Date of Patent: June 2, 2020
    Assignee: ELWHA LLC
    Inventors: Jesse R. Cheatham, III, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Eric C. Leuthardt, Max N. Mankin, Nathan P. Myhrvold, Tony S. Pan, Robert C. Petroski, Elizabeth A. Sweeney, Clarence T. Tegreene, Nicholas W. Touran, Yaroslav A. Urzhumov, Charles Whitmer, Lowell L. Wood, Jr., Victoria Y. H. Wood
  • Patent number: 10671168
    Abstract: Described embodiments include a system and a method. A system includes a first ultrasound transmitter acoustically coupled to a conducting layer of a display surface and configured to deliver a first ultrasound wave to a selected delineated area. The first ultrasonic wave has parameters sufficient to induce a non-linear vibrational response in the conducting layer. A second ultrasound transmitter is acoustically coupled to the conducting layer and configured to deliver a second ultrasound wave to the selected delineated area. The second ultrasonic wave has parameters sufficient to induce a non-linear vibrational response in the conducting layer. A controller selects a delineated area in response to an indication of a touch to the display surface, and initiates delivery of the first and second ultrasonic waves. A convergence of the first and second ultrasonic waves at the selected delineated area produces a stress pattern perceivable or discernible by the human appendage.
    Type: Grant
    Filed: September 20, 2017
    Date of Patent: June 2, 2020
    Assignee: Elwha LLC
    Inventors: Jesse R. Cheatham, III, William Gates, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Nathan P. Myhrvold, Tony S. Pan, Robert C. Petroski, Lowell L. Wood, Jr., Victoria Y. H. Wood
  • Patent number: 10665332
    Abstract: A method for facilitating physiological data acquisition includes scheduling a medical appointment between a patient and a medical provider. The medical appointment is to be conducted at a medical provider location on an appointment date. The method also includes selecting a medical device configured to acquire physiological data regarding the patient. The method further includes sending, to a fulfillment system, a request to provide the medical device to a patient location prior to the appointment date. The patient location is remote from the medical provider location.
    Type: Grant
    Filed: January 23, 2015
    Date of Patent: May 26, 2020
    Assignee: ELWHA LLC
    Inventors: Alistair K. Chan, Jesse R. Cheatham, III, Joel Cherkis, Paul H. Dietz, Tom Driscoll, William Gates, Roderick A. Hyde, Muriel Y. Ishikawa, Neil Jordan, Jordin T. Kare, Eric C. Leuthardt, Nathan P. Myhrvold, Patrick Neill, Tony S. Pan, Robert C. Petroski, David R. Smith, Elizabeth A. Sweeney, Desney S. Tan, Clarence T. Tegreene, David L. Tennenhouse, Yaroslav A. Urzhumov, Gary Wachowicz, Lowell L. Wood, Jr., Victoria Y. H. Wood
  • Patent number: 10665356
    Abstract: Configurations of molten fuel salt reactors are described that utilize neutron-reflecting coolants or a combination of primary salt coolants and secondary neutron-reflecting coolants. Further configurations are described that circulate liquid neutron-reflecting material around an reactor core to control the neutronics of the reactor. Furthermore, configurations which use the circulating neutron-reflecting material to actively cool the containment vessel are also described.
    Type: Grant
    Filed: May 2, 2017
    Date of Patent: May 26, 2020
    Assignee: TerraPower, LLC
    Inventors: Ryan Abbott, Brian C. Kelleher, William M. Kerlin, Kevin Kramer, Jeffery F. Latkowski, Jon D. McWhirter, Robert C. Petroski, Joshua C. Walter, Jesse R. Cheatham, III, Anselmo T. Cisneros, Jr., Ken Czerwinski, Bassem S. El-Dasher, Daniel Flowers, Charles Gregory Freeman, Mark A. Havstad, Christopher J. Johns
  • Patent number: 10596365
    Abstract: Embodiments disclosed herein relate to a garment system including at least one sensor and at least one actuator that operates responsive to sensing feedback from the at least one sensor to cause a flexible compression garment to selectively constrict or selectively dilate, thereby compressing or relieving compression against at least one body part of a subject. Such selective constriction or dilation can improve muscle functioning or joint functioning during use of motion-conducive equipment, such as an exercise bike or rowing machine.
    Type: Grant
    Filed: February 21, 2019
    Date of Patent: March 24, 2020
    Assignee: ELWHA LLC
    Inventors: Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Max N. Mankin, Nathan P. Myhrvold, Tony S. Pan, Robert C. Petroski, Elizabeth A. Sweeney, Clarence T. Tegreene, Nicholas W. Touran, Yaroslav A. Urzhumov, Lowell L. Wood, Jr., Victoria Y. H. Wood