Patents by Inventor Robert D. Edwards

Robert D. Edwards has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240124288
    Abstract: A portable, self-contained beverage apparatus includes a container assembly having a known storage capacity for storing a consumable liquid, and a dispensing assembly disposed within the container assembly that dispenses variable, non-zero quantities of additives into the consumable liquid. The dispensing assembly includes multiple apertures structured and arranged to retain vessels containing the additives to be dispensed into the consumable liquid. The beverage apparatus also includes a level sensor disposed within the container assembly that determines a consumable liquid level of the consumable liquid stored in the container assembly. In certain embodiments, one or more positive displacement pumping mechanisms are configured to pump additive liquid from additive containers into a beverage chamber.
    Type: Application
    Filed: December 22, 2023
    Publication date: April 18, 2024
    Applicant: Cirkul, Inc.
    Inventors: Mark Lyons, Jonathon Perrelli, Robert Lawson-Shanks, Abraham Maclean, Connor Bacon, James Christopher Small, Jesse John Horne, Simon Lewis Bilton, Matthew James Edwards, Andrew Gordon Wallace, Maxim D. Wheatley, David J. Wheatley, Todd Metlen
  • Patent number: 9702930
    Abstract: A wafer probing system includes a probe card assembly having a plurality of individual probe structures configured make contact with a semiconductor wafer mounted on a motor driven wafer chuck, with each probe structure configured with a pressure sensing unit integrated therewith; and a controller configured to drive the probe card assembly with one or more piezoelectric driver units response to feedback from the pressure sensing units of the individual probe structures.
    Type: Grant
    Filed: April 5, 2016
    Date of Patent: July 11, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Robert D. Edwards, Oleg Gluschenkov, Louis V. Medina, Tso-Hui Ting, Ping-Chuan Wang, Yongchun Xin
  • Patent number: 9673089
    Abstract: An improved interconnect structure including a dielectric layer having a conductive feature embedded therein, the conductive feature having a first top surface that is substantially coplanar with a second top surface of the dielectric layer; a metal cap layer located directly on the first top surface, wherein the metal cap layer does not substantially extend onto the second top surface; a first dielectric cap layer located directly on the second top surface, wherein the first dielectric cap layer does not substantially extend onto the first top surface and the first dielectric cap layer is thicker than the metal cap layer; and a second dielectric cap layer on the metal cap layer and the first dielectric cap layer. A method of forming the interconnect structure is also provided.
    Type: Grant
    Filed: October 31, 2014
    Date of Patent: June 6, 2017
    Assignee: AURIGA INNOVATIONS, INC
    Inventors: Griselda Bonilla, Kaushik Chanda, Robert D. Edwards, Ronald G. Filippi, Andrew H. Simon, Ping-Chuan Wang
  • Publication number: 20160216321
    Abstract: A wafer probing system includes a probe card assembly having a plurality of individual probe structures configured make contact with a semiconductor wafer mounted on a motor driven wafer chuck, with each probe structure configured with a pressure sensing unit integrated therewith; and a controller configured to drive the probe card assembly with one or more piezoelectric driver units response to feedback from the pressure sensing units of the individual probe structures.
    Type: Application
    Filed: April 5, 2016
    Publication date: July 28, 2016
    Inventors: Robert D. Edwards, Oleg Gluschenkov, Louis V. Medina, Tso-Hui Ting, Ping-Chuan Wang, Yongchun Xin
  • Patent number: 9354252
    Abstract: A wafer probing system includes a probe card assembly having a plurality of individual probe structures configured make contact with a semiconductor wafer mounted on a motor driven wafer chuck, with each probe structure configured with a pressure sensing unit integrated therewith; and a controller configured to drive the probe card assembly with one or more piezoelectric driver units response to feedback from the pressure sensing units of the individual probe structures.
    Type: Grant
    Filed: December 4, 2014
    Date of Patent: May 31, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Robert D. Edwards, Oleg Gluschenkov, Louis V. Medina, Tso-Hui Ting, Ping-Chuan Wang, Yongchun Xin
  • Patent number: 9059111
    Abstract: A semiconductor structure, method of manufacturing the same and design structure thereof are provided. The semiconductor structure includes a substrate including a semiconductor layer and a plurality of TSVs embedded therein. At least one TSV has a TSV tip extending from a backside surface of the substrate. The semiconductor structure further includes a multilayer metal contact structure positioned on the backside surface of the substrate. The multilayer metal contact structure includes at least a conductive layer covering the backside surface of the substrate and covering protruding surfaces of the TSV tip. The conductive layer has a non-planar first surface and a substantially planar second surface opposite of the first surface.
    Type: Grant
    Filed: April 11, 2013
    Date of Patent: June 16, 2015
    Assignee: International Business Machines Corporation
    Inventors: Robert D. Edwards, Jeffrey P. Gambino, Charles F. Musante, Ping-Chuan Wang
  • Publication number: 20150145544
    Abstract: A wafer probing system includes a probe card assembly having a plurality of individual probe structures configured make contact with a semiconductor wafer mounted on a motor driven wafer chuck, with each probe structure configured with a pressure sensing unit integrated therewith; and a controller configured to drive the probe card assembly with one or more piezoelectric driver units response to feedback from the pressure sensing units of the individual probe structures.
    Type: Application
    Filed: December 4, 2014
    Publication date: May 28, 2015
    Inventors: Robert D. Edwards, Oleg Gluschenkov, Louis V. Medina, Tso-Hui Ting, Ping-Chuan Wang, Yongchun Xin
  • Publication number: 20150056806
    Abstract: An improved interconnect structure including a dielectric layer having a conductive feature embedded therein, the conductive feature having a first top surface that is substantially coplanar with a second top surface of the dielectric layer; a metal cap layer located directly on the first top surface, wherein the metal cap layer does not substantially extend onto the second top surface; a first dielectric cap layer located directly on the second top surface, wherein the first dielectric cap layer does not substantially extend onto the first top surface and the first dielectric cap layer is thicker than the metal cap layer; and a second dielectric cap layer on the metal cap layer and the first dielectric cap layer. A method of forming the interconnect structure is also provided.
    Type: Application
    Filed: October 31, 2014
    Publication date: February 26, 2015
    Inventors: Griselda Bonilla, Kaushik Chanda, Robert D. Edwards, Ronald G. Filippi, Andrew H. Simon, Ping-Chuan Wang
  • Patent number: 8963567
    Abstract: A wafer probing system includes a probe card assembly having a plurality of individual probe structures configured make contact with a semiconductor wafer mounted on a motor driven wafer chuck, with each probe structure configured with a pressure sensing unit integrated therewith; and a controller configured to drive the probe card assembly with one or more piezoelectric driver units response to feedback from the pressure sensing units of the individual probe structures.
    Type: Grant
    Filed: October 31, 2011
    Date of Patent: February 24, 2015
    Assignee: International Business Machines Corporation
    Inventors: Robert D. Edwards, Oleg Gluschenkov, Louis V. Medina, Tso-Hui Ting, Ping-Chuan Wang, Yongchun Xin
  • Patent number: 8912658
    Abstract: An improved interconnect structure including a dielectric layer having a conductive feature embedded therein, the conductive feature having a first top surface that is substantially coplanar with a second top surface of the dielectric layer; a metal cap layer located directly on the first top surface, wherein the metal cap layer does not substantially extend onto the second top surface; a first dielectric cap layer located directly on the second top surface, wherein the first dielectric cap layer does not substantially extend onto the first top surface and the first dielectric cap layer is thicker than the metal cap layer; and a second dielectric cap layer on the metal cap layer and the first dielectric cap layer. A method of forming the interconnect structure is also provided.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: December 16, 2014
    Assignee: International Business Machines Corporation
    Inventors: Ronald Filippi, Ping-Chuan Wang, Griselda Bonilla, Kaushik Chanda, Robert D. Edwards, Andrew H. Simon
  • Publication number: 20140306322
    Abstract: A semiconductor structure, method of manufacturing the same and design structure thereof are provided. The semiconductor structure includes a substrate including a semiconductor layer and a plurality of TSVs embedded therein. At least one TSV has a TSV tip extending from a backside surface of the substrate. The semiconductor structure further includes a multilayer metal contact structure positioned on the backside surface of the substrate. The multilayer metal contact structure includes at least a conductive layer covering the backside surface of the substrate and covering protruding surfaces of the TSV tip. The conductive layer has a non-planar first surface and a substantially planar second surface opposite of the first surface.
    Type: Application
    Filed: April 11, 2013
    Publication date: October 16, 2014
    Applicant: International Business Machines Corporation
    Inventors: Robert D. Edwards, Jeffrey P. Gambino, Charles F. Musante, Ping-Chuan Wang
  • Publication number: 20130106455
    Abstract: A wafer probing system includes a probe card assembly having a plurality of individual probe structures configured make contact with a semiconductor wafer mounted on a motor driven wafer chuck, with each probe structure configured with a pressure sensing unit integrated therewith; and a controller configured to drive the probe card assembly with one or more piezoelectric driver units response to feedback from the pressure sensing units of the individual probe structures.
    Type: Application
    Filed: October 31, 2011
    Publication date: May 2, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Robert D. Edwards, Oleg Gluschenkov, Louis V. Medina, Tso-Hui Ting, Ping-Chuan Wang, Yongchun Xin
  • Publication number: 20120104610
    Abstract: An improved interconnect structure including a dielectric layer having a conductive feature embedded therein, the conductive feature having a first top surface that is substantially coplanar with a second top surface of the dielectric layer; a metal cap layer located directly on the first top surface, wherein the metal cap layer does not substantially extend onto the second top surface; a first dielectric cap layer located directly on the second top surface, wherein the first dielectric cap layer does not substantially extend onto the first top surface and the first dielectric cap layer is thicker than the metal cap layer; and a second dielectric cap layer on the metal cap layer and the first dielectric cap layer. A method of forming the interconnect structure is also provided.
    Type: Application
    Filed: October 29, 2010
    Publication date: May 3, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ronald Filippi, Ping-Chuan Wang, Griselda Bonilla, Kaushik Chanda, Robert D. Edwards, Andrew H. Simon
  • Patent number: 8053257
    Abstract: The invention predicts premature dielectric breakdown in a semiconductor. At least one dielectric breakdown mode is calculated for a layer within chips comprising a semiconductor wafer lot. If only one mode is calculated, that is the best calculated mode. If multiple modes can be calculated, a best mode that most accurately represents dielectric breakdown for the semiconductor wafer lot is determined. Premature dielectric breakdown will be associated with any semiconductor with a breakdown voltage less than a predetermined standard deviation from the best calculated mode.
    Type: Grant
    Filed: April 2, 2008
    Date of Patent: November 8, 2011
    Assignee: International Business Machines Corporation
    Inventors: Kaushik Chanda, Hazara S. Rathore, Paul S. McLaughlin, Robert D. Edwards, Lawrence A. Clevenger, Andrew P. Cowley, Chih-Chao Yang, Conrad A. Barile
  • Publication number: 20110260299
    Abstract: A semiconductor printed circuit board assembly (PCBA) and method for making same for use in electronic packages having a core layer of copper-invar-copper (CIC) with a layer of dielectric substrate placed on the core layer. A second layer of dielectric substrate is placed on the lower surface of the core layer of CIC. The layers are laminated together. Blind vias are laser drilled into the layers of dielectric substrate. The partially completed PCBA is subjected to a reactive ion etch (RIE) plasma as a first step to clean blind vias in the PCBA. After the plasma etch, an acidic etchant liquid solution is used on the blind vias. Pre-plating cleaning of blind vias removes a majority of oxides from the blind vias. Seed copper layers are then applied to the PCBA, followed by a layer of copper plating that can be etched to meet the requirements of the PCBA.
    Type: Application
    Filed: April 22, 2010
    Publication date: October 27, 2011
    Applicant: ENDICOTT INTERCONNECT TECHNOLOGIES, INC.
    Inventors: Robert D. Edwards, Frank D. Egitto, Luis J. Matienzo, Susan Pitely, Daniel C. Van Hart
  • Patent number: 7602265
    Abstract: The present invention provides multiple test structures for performing reliability and qualification tests on MEMS switch devices. A Test structure for contact and gap characteristic measurements is employed having a serpentine layout simulates rows of upper and lower actuation electrodes. A cascaded switch chain test is used to monitor process defects with large sample sizes. A ring oscillator is used to measure switch speed and switch lifetime. A resistor ladder test structure is configured having each resistor in series with a switch to be tested, and having each switch-resistor pair electrically connected in parallel. Serial/parallel test structures are proposed with MEMS switches working in tandem with switches of established technology. A shift register is used to monitor the open and close state of the MEMS switches. Pull-in voltage, drop-out voltage, activation leakage current, and switch lifetime measurements are performed using the shift register.
    Type: Grant
    Filed: October 20, 2005
    Date of Patent: October 13, 2009
    Assignee: International Business Machines Corporation
    Inventors: Hariklia Deligianni, Robert D. Edwards, Thomas J. Fleischman, Robert A. Groves, Charles J. Montrose, Richard P. Volant, Ping-Chuan Wang
  • Publication number: 20080174334
    Abstract: The invention predicts premature dielectric breakdown in a semiconductor. At least one dielectric breakdown mode is calculated for the semiconductor wafer. If a one mode is calculated, premature dielectric breakdown will be associated with any semiconductor with a breakdown voltage less than a predetermined standard deviation of a plurality of breakdown voltages within said calculated mode. If multiple modes are calculated, the mode that most accurately represents dielectric breakdown for the semiconductor wafer is determined and premature dielectric breakdown will be associated with any semiconductor with a breakdown voltage less than a predetermined standard of the calculated mode that most accurately represents dielectric breakdown for the semiconductor wafer.
    Type: Application
    Filed: April 2, 2008
    Publication date: July 24, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kaushik Chanda, Hazara S. Rathore, Paul S. McLaughlin, Robert D. Edwards, Lawrence A. Clevenger, Andrew P. Cowley, Chih-Chao Yang, Conrad A. Barile
  • Patent number: 7223476
    Abstract: Methods for making composite flakes are disclosed. The composite flakes are formed from particles and one or more monomers and/or resins or resin systems. The polymer matrix of the flakes is highly crosslinked and/or high molecular weight. Use of the particles in powder coatings is also disclosed.
    Type: Grant
    Filed: June 14, 2004
    Date of Patent: May 29, 2007
    Assignee: PPG Industries Ohio, Inc.
    Inventors: Robert D. Edwards, Jackie L. Kulfan, Calum H. Munro
  • Patent number: 7169313
    Abstract: A method of plating a circuit pattern on a substrate to produce a circuitized substrate (e.g., a printed circuit board) in which a dual step metallurgy application process is used in combination with a dual step photo-resist removal process. Thru-holes are also possible, albeit not required.
    Type: Grant
    Filed: May 13, 2005
    Date of Patent: January 30, 2007
    Assignee: Endicott Interconnect Technologies, Inc.
    Inventors: Norman A. Card, Robert D. Edwards, John J. Konrad, Roy H. Magnuson, Timothy L. Wells, Michael Wozniak
  • Patent number: 6383617
    Abstract: Gold is deposited on a copper base defining electrical circuit features disposed on a substrate containing a palladium seeder, by initially treating the substrate with an alkaline cleaner, followed by treating the substrate with sodium persulfate, and subsequently treating the substrate with a diluted sulfuric acid solution. The substrate is rinsed between each one of the treatments, and after the final rinse following treatment with diluted sulfuric acid, the substrate is immersed in a gold deposition solution whereby gold is deposited on the exposed surfaces of the copper circuit features on a substrate. The process embodying the present invention provides a method for depositing gold on high density copper conductor lines or pads, even in areas of the surface in which the conductors are spaced apart 2.0 mil or less, without cleaning or removing the palladium seed from the surface.
    Type: Grant
    Filed: April 10, 2000
    Date of Patent: May 7, 2002
    Assignee: International Business Machines Corp.
    Inventors: Gerald L. Ballard, Robert D. Edwards, John G. Gaudiello, Voya R. Markovich