Patents by Inventor Robert Dirk van de Grampel

Robert Dirk van de Grampel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11873375
    Abstract: A reinforced polycarbonate composition includes 30-60 wt % of a homopolycarbonate; 5-30 wt % of a poly(carbonate-siloxane); 10-40 wt % of a high heat polycarbonate having a glass transition temperature of 170° C. or higher determined per ASTM D3418 with a 20° C./min heating rate; 1-10 wt % of a phosphorous-containing flame retardant present in amount effective to provide 0.1-1.5 wt % phosphorous; 0.01-0.5 wt % of an anti-drip agent; 5-30 wt % of a reinforcing fiber; and optionally, up to 10 wt % of an additive composition, wherein each amount is based on the total weight of the reinforced polycarbonate composition, which sums to 100 wt %. A molded sample of the polycarbonate composition has a heat deflection temperature greater than 115° C., preferably greater than 125° C., more preferably greater than 130° C., or a flame test rating of V1, preferably V0 as measured according to UL-94 at a thickness of 0.8 millimeter, or at a thickness of 0.6 mm, or at a thickness of 0.4 mm.
    Type: Grant
    Filed: June 25, 2020
    Date of Patent: January 16, 2024
    Assignee: SHPP GLOBAL TECHNOLOGIES B.V.
    Inventors: Erik Schwartz, Sascha Jan ter Horst, Mark Adrianus Johannes van der Mee, Johannes Martinus Dina Goossens, Robert Dirk van de Grampel, Tony Farrell
  • Publication number: 20240010832
    Abstract: A flame retardant composition comprising: a polycarbonate; a branched polycarbonate comprising bisphenol carbonate units, 0.01 to 1.0 mol % of a repeating unit derived from a monomer having a pendant ester group, or a combination thereof, and repeating units derived from a branching agent based on the total moles of the composition; a linear polycarbonate comprising bisphenol carbonate units and 0.01 to 1.0 mol % of a repeating unit derived from a monomer having a pendant ester group based on the total moles of the composition; a flame retardant comprising an alkyl sulfonate, an aromatic sulfonate, an aromatic sulfone sulfonate, an aromatic organophosphorus compound, or a combination thereof, and optionally a cyclic siloxane; optionally, an additive composition; and optionally, a filler.
    Type: Application
    Filed: December 14, 2021
    Publication date: January 11, 2024
    Inventors: Fabrizio MICCICHE, Frederick PREHN, JR., Jan Henk KAMPS, Robert Dirk VAN DE GRAMPEL
  • Publication number: 20230272187
    Abstract: A composition includes a polycarbonate resin formed via an interfacial polymerization process and from 0.05 ppm to 50 ppm of a sulfonic acid. A molded article formed from the composition may exhibit a yellowness index that is less than that of a reference molded article formed from substantially similar polycarbonate composition comprising the polycarbonate resin but in the absence of the sulfonic acid. Methods for forming the molded article in accordance with the above are also described.
    Type: Application
    Filed: May 3, 2023
    Publication date: August 31, 2023
    Inventors: Tamara Marijke Eggenhuisen, Roland Sebastian Assink, Kazuhiko Mitsui, Robert Dirk van de Grampel, Mark van der Mee
  • Patent number: 11692076
    Abstract: A composition includes a polycarbonate resin formed via an interfacial polymerization process and from 0.05 ppm to 50 ppm of a sulfonic acid. A molded article formed from the composition may exhibit a yellowness index that is less than that of a reference molded article formed from substantially similar polycarbonate composition comprising the polycarbonate resin but in the absence of the sulfonic acid. Methods for forming the molded article in accordance with the above are also described.
    Type: Grant
    Filed: June 15, 2018
    Date of Patent: July 4, 2023
    Assignee: SABIC GLOBAL TECHNOLOGIES B.V.
    Inventors: Tamara Marijke Eggenhuisen, Roland Sebastian Assink, Kazuhiko Mitsui, Robert Dirk van de Grampel, Mark van der Mee
  • Publication number: 20230174778
    Abstract: Polycarbonate compositions comprising a linear homopolycarbonate, a poly(phthalate-carbonate), or a combination thereof; a poly(carbonate-siloxane) component present in an amount effective to provide 0.1 to 10 wt % siloxane, based on the total weight of the composition, comprising: a poly(carbonate-siloxane) having a 30-70 wt % siloxane content, a combination of a poly(carbonate-siloxane) having a 10 wt % or less siloxane content and a poly(carbonate-siloxane) having greater than 10 wt % to less than 30 wt % siloxane content, or a combination thereof; a linear polycarbonate comprising 0.1-4.0 mole % repeating units derived from a monomer having a pendant ester group based on the total moles of the composition; optionally, a reinforcing composition comprising glass fibers, a mineral filler, or a combination thereof; and a flame retardant comprising an aromatic organophosphorous compound can have low smoke density characteristics (e.g.
    Type: Application
    Filed: December 7, 2022
    Publication date: June 8, 2023
    Inventors: Fabrizio Micciche, Remco Wirtz, Robert Dirk van de Grampel, Fabio Di Lena, Mark Adrianus Johannes van der Mee
  • Publication number: 20230067710
    Abstract: A flame retardant composition comprising: 45.0-99.9 wt % of a high heat copolycarbonate comprising high heat carbonate units derived from high heat bisphenol monomers, and optionally comprising low heat carbonate units, wherein a homopolycarbonate of the low heat carbonate units has a glass transition temperature of up to 150° C. as determined by differential scanning calorimetry as per ASTM D3418 with heating rate of 20° C./min; 0-55 wt % of a homopolycarbonate; 0.1-0.8 wt % of a Ci-i6 alkyl sulfonate salt flame retardant; each based on the total weight of the flame retardant composition wherein a molded sample of the flame retardant composition has a UL 94 rating of V0 at a thickness of 1.5 millimeter, and a transmission of greater than 80%, 85%, or 88% or a haze of less than 2%, or 1%, each of the transmission and haze was determined according ASTM D1003 at a thickness of 1.0 millimeter.
    Type: Application
    Filed: December 4, 2020
    Publication date: March 2, 2023
    Inventors: Mark Adrianus Johannes van der Mee, Fabrizio Micciche, Roland Sebastian Assink, Robert Dirk Van de Grampel, Tony Farrell
  • Publication number: 20230035378
    Abstract: A reinforced polycarbonate composition comprising 50-95 wt % of a poly(aliphatic ester-carbonate); 5-40 wt % of a high heat copolycarbonate comprising high heat carbonate units derived from 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethyl-cyclohexane, N-phenyl phenolphthalein bisphenol, 4,4-(1-phenylethylidene)bisphenol, 4,4-(3,3-dimethyl-2,2-dihydro-1H-indene-1,1-diyl)diphenol, 1,1-bis(4-hydroxyphenyl)cyclododecane, 3,8-dihydroxy-5a,10b-diphenyl-coumarano-2?,3?,2,3-coumarane, or a combination thereof, preferably 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethyl-cyclohexane, N-phenyl phenolphthalein bisphenol, or a combination thereof, and optionally comprising low heat carbonate units; 0.1-0.8 wt % of a C1-16 alkyl sulfonate salt flame retardant; 0.1-0.8 wt % of an anti-drip agent; 5-35 wt % glass fibers; wherein each amount is based on the total weight of the reinforced polycarbonate composition, which sums to 100 wt %.
    Type: Application
    Filed: December 15, 2020
    Publication date: February 2, 2023
    Inventors: Mark Adrianus Johannes van der Mee, Fabrizio Micciche, Robert Dirk Van de Grampel
  • Patent number: 11525055
    Abstract: The disclosure concerns methods for molding a polycarbonate containing plastic, the method including: (a) injecting a composition into a mold, the composition including (i) about 49 wt % to about 97.9 wt % of polycarbonate, (ii) about 2.0 wt % to about 50 wt % of a polycarbonate-polysiloxane copolymer, and (iii) about 0 wt % to about 1.0 wt % of at least one release agent; and (b) releasing the composition from the mold. The mold includes at least one draft angle of about 0.1 degrees to about 7 degrees. The polycarbonate blend includes a melt flow volume rate (MVR) of at least about 25 cm3/10 min as measured according to ISO 1133 at 300° C. and 1.2 kg.
    Type: Grant
    Filed: July 28, 2017
    Date of Patent: December 13, 2022
    Assignee: SHPP GLOBAL TECHNOLOGIES B.V.
    Inventors: Maria Dolores Martinez Canovas, Mark Adrianus Johannes Van Der Mee, Robert Dirk Van De Grampel, Erhard Bruss
  • Publication number: 20220372280
    Abstract: A flame retardant composition comprising: 34-94 wt % of a homopolycarbonate, acopolycarbonate, or a combination thereof; 5-85 wt % poly(carbonate-siloxane), in an amount effective to provide 2-6 wt % dimethyl siloxane; 0.05-0.6 w t%, preferably 0.2-0.4 wt%, of a C1-16 alkyl sulfonate salt flame retardant; 1-15 wt % of a mineral-filled silicone flame retardant synergist; 0.05-0.5 wt % of an anti-drip agent; wherein each amount is based on the total weight of the flame retardant composition, which sums to 100 wt %; and wherein a molded sample of the flame retardant composition has a Vicat softening temperature of greater than or equal to 140° C. as measured according to the ISO-306 standard at a load of 10 N and a heating rate of 50° C. per hour, and a flame test rating of V0 as measured according to UL-94 at a thickness of 1.0 millimeter, or at a thickness of 0.8 millimeter.
    Type: Application
    Filed: September 30, 2020
    Publication date: November 24, 2022
    Inventors: Fabrizio Micciche, Rein Mollerus Faber, Mark Adrianus Johannes Van Der Mee, Robert Dirk Van De Grampel, Tony Farrell
  • Publication number: 20210347097
    Abstract: A composition includes a polycarbonate resin, a heat stabilizer, and an acid stabilizer. An article formed from the composition, when tested using a 2.5 mm color plaque, includes a level of free —OH groups that is less than a level of free —OH groups of a reference article injection molded from a substantially similar reference composition consisting essentially of the polycarbonate resin without the heat stabilizer and the acid stabilizer. Methods for forming the molded article in accordance with the above are also described.
    Type: Application
    Filed: July 16, 2021
    Publication date: November 11, 2021
    Inventors: Tamara Marijke Eggenhuisen, Roland Sebastian Assink, Robert Dirk van de Grampel
  • Patent number: 11155695
    Abstract: A molded article includes a polycarbonate resin, an ultraviolet (UV) absorbing component, a heat stabilizer component and an acid stabilizer component. The polycarbonate resin is produced by an interfacial polymerization process and has an end-cap level of at least about 98%, and includes a ratio of bound UV absorbing component to free UV absorbing component of less than about 1.0 when molded under abusive molding conditions. The polycarbonate resin may include high purity polycarbonate. The acid stabilizer component may include a sulfonic acid ester. Methods of forming molded articles are also described.
    Type: Grant
    Filed: December 12, 2016
    Date of Patent: October 26, 2021
    Assignee: SABIC GLOBAL TECHNOLOGIES B.V.
    Inventors: Tamara Marijke Eggenhuisen, Roland Sebastian Assink, Eduardus Ludovicus Louisa Broekaart, Robert Dirk Van De Grampel, David Del Agua Hernandez, Ignacio Vic Fernandez
  • Patent number: 11021404
    Abstract: Described herein are cold-sintered ceramic polymer composites and processes for making them from ceramic precursor materials and monomers and/or oligomers. The cold sintering process and wide variety of monomers permit the incorporation of diverse polymeric materials into the ceramic.
    Type: Grant
    Filed: August 25, 2017
    Date of Patent: June 1, 2021
    Assignee: SHPP GLOBAL TECHNOLOGIES B.V.
    Inventors: Erik Schwartz, Thomas L. Evans, Theodorus Hoeks, Robert Dirk Van De Grampel, Chiel Albertus Leenders, Mark John Armstrong
  • Publication number: 20210095118
    Abstract: A glass-filled polycarbonate composition comprising 5 to 95 wt % of a high heat copolycarbonate component; a phosphorous-containing flame retardant present in an amount effective to provide about 0.2 to 0.9 wt % of added phosphorous, 5 to 45 wt % of glass fibers; optionally, 5 to 50 wt % of a homopolycarbonate optionally, 5 to 45 wt % of a poly(carbonate-siloxane); optionally, 0.1 to 0.97 wt % of an anti-drip agent; wherein each amount is based on the total weight of the glass-filled polycarbonate composition, which sums to 100 wt %; wherein a molded sample of the glass-filled polycarbonate composition has a Vicat softening temperature of greater than or equal to 135° C. as measured according to ISO 306, and a flame test rating of V0 as measured according to UL-94 at a thickness of 1.0 millimeter, preferably 0.8 millimeter, or preferably 0.4 millimeter.
    Type: Application
    Filed: June 23, 2020
    Publication date: April 1, 2021
    Inventors: Tony FARRELL, Erik SCHWARTZ, Sascha Jan TER HORST, Mark Adrianus Johannes VAN DER MEE, Johannes Martinus Dina GOOSSENS, Robert Dirk VAN DE GRAMPEL
  • Patent number: 10947381
    Abstract: A thermoplastic composition comprises: a copolycarbonate comprising bisphenol A carbonate units and second carbonate units of the formula (I) and optionally, a bisphenol A homopolycarbonate; wherein the second carbonate units are present in an amount of 10 to 49 mol % based on the sum of the moles of the copolycarbonate and the bisphenol A homopolycarbonate, the copolycarbonate comprises less than 2 ppm by weight of each of an ion of lithium, sodium, potassium, calcium, magnesium, ammonium, chlorine, bromine, fluorine, nitrite, nitrate, phosphite, phosphate, sulfate, formate, acetate, citrate, oxalate, trimethylammonium, and triethylammonium, as measured by ion chromatography, and the thermoplastic composition has a bisphenol A purity of at least 99.6%, or at least 99.7% as determined by high performance liquid chromatography. The thermoplastic composition has a Vicat B120 of 155° C. or higher; and an increase in yellowness index of less than 10 during 1000 hours of heat aging at 155° C.
    Type: Grant
    Filed: May 27, 2017
    Date of Patent: March 16, 2021
    Assignee: SABIC GLOBAL TECHNOLOGIES B.V.
    Inventors: Mark Adrianus Johannes Van Der Mee, Nathalie Gonzalez Vidal, Fabrizio Micciche, Roland Sebastian Assink, Kazuhiko Mitsui, Johannes De Brouwer, Shahram Shafaei, Hendrikus Petrus Cornelis Van Heerbeek, Tamara Marijke Eggenhuisen, Robert Dirk Van De Grampel
  • Publication number: 20210054195
    Abstract: A thermoplastic composition including a copolycarbonate comprising bisphenol A carbonate units and second carbonate units of the formula wherein Ra and Rb are each independently a C1-12 alkyl, C1-12 alkenyl, C3-8 cycloalkyl, or C1-12 alkoxy, each R3 is independently a C1-6 alkyl, R4 is hydrogen, C2-6 alkyl or phenyl optionally substituted with 1 to 5 C1-6 alkyl groups, p, q, and j are each independently 0 to 4, optionally a bisphenol A homopolycarbonate; and an acid stabilizer comprising a sulfonic acid ester; wherein the composition has an improved volatile or non-volatile organic compound content and yellowness index value when compared to a reference sample of an otherwise identical composition except for not containing the stabilizer.
    Type: Application
    Filed: September 2, 2020
    Publication date: February 25, 2021
    Inventors: Johannes DE BROUWER, Robert Dirk VAN DE GRAMPEL, Mark Adrianus Johannes VAN DER MEE, Peter DIMATTIA
  • Patent number: 10899877
    Abstract: A poly(carbonate-ester) copolymer including carbonate units of the formula (I); and ester units of the formula (II) wherein: T is a C2-20 alkylene, a C6-20 cycloalkylene, or a C6-20 arylene; and R1 and J are each independently a bisphenol A divalent group, or a phthalimidine divalent group or a third divalent group of the formula (III), (IV), (V), (VI) or (VII) wherein Xa is a C6-12 polycyclic aryl, C3-18 mono- or polycycloalkylene, C3-18 mono- or polycycloalkylidene, -(Q1)x-G-(Q2)y- group wherein Q1 and Q2 are each independently a C1-3 alkylene, G is a C3-10 cycloalkylene, x is 0 or 1, and y is 1, provided that the at least one bisphenol A divalent group, at least one phthalimidine divalent group, and at least one third divalent group are present in the poly(carbonate-ester) copolymer.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: January 26, 2021
    Assignee: SHPP GLOBAL TECHNOLOGIES B.V.
    Inventors: Paul Dean Sybert, Tony Farrell, Rob Boonman, Robert Dirk Van De Grampel, Mark Adrianus Johannes Van Der Mee
  • Publication number: 20200407517
    Abstract: A reinforced polycarbonate composition includes 30-60 wt % of a homopolycarbonate; 5-30 wt % of a poly(carbonate-siloxane); 10-40 wt % of a high heat polycarbonate having a glass transition temperature of 170° C. or higher determined per ASTM D3418 with a 20° C./min heating rate; 1-10 wt % of a phosphorous-containing flame retardant present in amount effective to provide 0.1-1.5 wt % phosphorous; 0.01-0.5 wt % of an anti-drip agent; 5-30 wt % of a reinforcing fiber; and optionally, up to 10 wt % of an additive composition, wherein each amount is based on the total weight of the reinforced polycarbonate composition, which sums to 100 wt %. A molded sample of the polycarbonate composition has a heat deflection temperature greater than 115° C., preferably greater than 125° C., more preferably greater than 130° C., or a flame test rating of V1, preferably V0 as measured according to UL-94 at a thickness of 0.8 millimeter, or at a thickness of 0.6 mm, or at a thickness of 0.4 mm.
    Type: Application
    Filed: June 25, 2020
    Publication date: December 31, 2020
    Inventors: Erik Schwartz, Sascha Jan ter Horst, Mark Adrianus Johannes van der Mee, Johannes Martinus Dina Goossens, Robert Dirk van de Grampel, Tony Farrell
  • Publication number: 20200377720
    Abstract: A composition includes a polycarbonate resin, a heat stabilizer, and an acid stabilizer. An article formed from the composition, when tested using a 2.5 mm color plaque, includes a level of free —OH groups that is less than a level of free —OH groups of a reference article injection molded from a substantially similar reference composition consisting essentially of the polycarbonate resin without the heat stabilizer and the acid stabilizer. Methods for forming the molded article in accordance with the above are also described.
    Type: Application
    Filed: June 16, 2017
    Publication date: December 3, 2020
    Inventors: Tamara Marijke Eggenhuisen, Roland Sebastian Assink, Robert Dirk van de Grampel
  • Patent number: 10808100
    Abstract: A molded article includes a polycarbonate resin, an ultraviolet (UV) absorbing component, a heat stabilizer component, and a colorant. The molded article, when tested using a 2.5 mm color plaque, includes a color difference delta E* (dE*) of less than about 0.6 following molding under abusive molding conditions as compared to a reference article molded under standard processing conditions. The molded article may include a color difference delta b* (db*) of less than about 0.3 after being molded under the abusive molding conditions as compared to a reference article molded under standard processing conditions. The UV absorbing component may include a benzotriazole compound. Methods for forming a molded article in accordance with the above are also described.
    Type: Grant
    Filed: December 12, 2016
    Date of Patent: October 20, 2020
    Assignee: SABIC GLOBAL TECHNOLOGIES B.V.
    Inventors: Tamara Marijke Eggenhuisen, Roland Sebastian Assink, Eduardus Ludovicus Louisa Broekaart, Robert Dirk Van De Grampel
  • Patent number: 10793715
    Abstract: A molded article includes a polycarbonate resin and a colorant, and the molded article, when tested using a 3 mm color plaque, includes a color difference delta E (dE*) of less than about 0.6 following molding under abusive molding conditions as compared to a reference article molded under standard processing conditions. The molded article may include a color difference delta b (db*) of less than about 0.3 after being molded under the abusive molding conditions. The molded article may also exhibit a shift in wavelength of maximum absorbance of less than about 5 nm after being molded under the abusive molding conditions and/or a difference in absorbance intensity of less than about 15% after being molded under the abusive molding conditions as compared to a reference article molded under standard processing conditions. Methods for forming a molded article in accordance with the above are also described.
    Type: Grant
    Filed: December 12, 2016
    Date of Patent: October 6, 2020
    Assignee: SABIC GLOBAL TECHNOLOGIES B.V.
    Inventors: Tamara Marijke Eggenhuisen, Roland Sebastian Assink, Eduardus Ludovicus Louisa Broekaart, Robert Dirk Van De Grampel