Patents by Inventor Robert H. Burgener

Robert H. Burgener has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040235214
    Abstract: Commercially viable methods of manufacturing p-type group II-VI semiconductor materials are disclosed. A thin film of group II-VI semiconductor atoms is deposited on a self supporting substrate surface. The semiconductor material includes atoms of group II elements, group VI elements, and one or more p-type dopants. The semiconductor material may be deposited on the substrate surface under deposition conditions in which the group II atoms, group VI atoms, and p-type dopant atoms are in a gaseous phase prior to combining as the thin film. Alternatively, a liquid deposition process may be used to deposit the group II atoms, group VI atoms, and p-type dopant atoms in a predetermined orientation to result in the fabrication of the group II-VI semiconductor material. The resulting semiconductor thin film is a persistent p-type semiconductor, and the p-type dopant concentration is greater than about 1016 atoms·cm−3. The semiconductor resistivity is less than about 0.5 ohm·cm.
    Type: Application
    Filed: May 19, 2004
    Publication date: November 25, 2004
    Inventors: Robert H. Burgener, Roger L. Felix, Gary M. Renlund
  • Publication number: 20040196538
    Abstract: Up-conversion and down-conversion photo-luminescence in rare earth compounds are disclosed. Broadband, super-radiant, and discrete line emissions are observed. The rare earth compounds include a rare earth element and at least one other element selected from chalcogens, halogens, nitrogen, and phosphorus. The rare earth compounds include, but are not limited to, rare earth oxides, fluorides, and oxyfluorides. Doping and co-doping of rare earth compounds in an optical host material is not required. The compounds are irradiated with incident light having an incident wavelength that is selected to be highly absorbed by the rare earth compound. The up-conversion and down-conversion luminescence have been observed which may be caused by unknown electron transitions, particularly in the case of ytterbia.
    Type: Application
    Filed: February 13, 2004
    Publication date: October 7, 2004
    Inventors: Robert H. Burgener, Roger L. Felix, Gary M. Renlund
  • Publication number: 20040159903
    Abstract: Electroluminescent materials and devices which emit non-thermal light in response to an electric field are disclosed. The electroluminescent materials are based upon a multicomponent ceramic oxide host compound and one or more metal oxide dopant compounds which form a solid solution with the ceramic oxide host compound. The dopant is present in the host at an amount in the range from about 0.002 mole % to 0.1 mole %. In the electroluminescent devices, a layer of electroluminescent material is disposed between a transparent conductive oxide layer and a ground plane. An electric field generator is electrically connected to the conductive oxide layer and the ground plane for generating an electric field. The layer of electroluminescent material is coated with at least one barrier layer, and preferably a pair of barrier layers, to inhibit chemical reaction of the electroluminescent material. The electroluminescent devices preferably include a dielectric layer.
    Type: Application
    Filed: February 17, 2004
    Publication date: August 19, 2004
    Inventors: Robert H. Burgener, Roger L. Felix, Gary M. Renlund