Patents by Inventor Robert J. Gauthier

Robert J. Gauthier has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9881810
    Abstract: Structures and methods are provided for nanosecond electrical pulse anneal processes. The method of forming an electrostatic discharge (ESD) N+/P+ structure includes forming an N+ diffusion on a substrate and a P+ diffusion on the substrate. The P+ diffusion is in electrical contact with the N+ diffusion. The method further includes forming a device between the N+ diffusion and the P+ diffusion. A method of annealing a structure or material includes applying an electrical pulse across an electrostatic discharge (ESD) N+/P+ structure for a plurality of nanoseconds.
    Type: Grant
    Filed: January 14, 2014
    Date of Patent: January 30, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Michel J. Abou-Khalil, Robert J. Gauthier, Jr., Tom C. Lee, Junjun Li, Souvick Mitra, Christopher S. Putnam, Robert R. Robison
  • Patent number: 9869708
    Abstract: A method of protecting devices within an integrated circuit during electro-static discharge (ESD) testing using an ESD test system is provided. The method includes applying a direct current (DC) bias voltage to an input of at least one device of the integrated circuit and applying an ESD simulated signal to at least one other input of the integrated circuit. The applied ESD simulated signal is conducted along a first current path to a first ground, while a low-current signal associated with the at least one device is conducted along a second current path to the second ground. The DC bias voltage is maintained between the input of the at least one device and the second ground at a substantially constant value in response to a signal variation on the second ground that results from the applied ESD simulated signal.
    Type: Grant
    Filed: October 14, 2015
    Date of Patent: January 16, 2018
    Assignee: International Business Machines Corporation
    Inventors: Shunhua Chang, James Paul Di Sarro, Robert J. Gauthier, Jr., Nathan Jack, Souvick Mitra
  • Patent number: 9818542
    Abstract: A gate-all around fin double diffused metal oxide semiconductor (DMOS) devices and methods of manufacture are disclosed. The method includes forming a plurality of fin structures from a substrate. The method further includes forming a well of a first conductivity type and a second conductivity type within the substrate and corresponding fin structures of the plurality of fin structures. The method further includes forming a source contact on an exposed portion of a first fin structure. The method further comprises forming drain contacts on exposed portions of adjacent fin structures to the first fin structure. The method further includes forming a gate structure in a dielectric fill material about the first fin structure and extending over the well of the first conductivity type.
    Type: Grant
    Filed: October 14, 2015
    Date of Patent: November 14, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: John B. Campi, Jr., Robert J. Gauthier, Jr., Rahul Mishra, Souvick Mitra, Mujahid Muhammad
  • Publication number: 20170229443
    Abstract: Field effect diode structures utilize a junction structure that has an L-shape in cross-section (a fin extending from a planar portion). An anode is positioned at the top surface of the fin, and a cathode is positioned at the end surface of the planar portion. The perpendicularity of the fin and the planar portion cause the anode and cathode to be perpendicular to one another. A first gate insulator contacts the fin between the top surface and the planar portion. A first gate conductor contacts the first gate insulator, and the first gate insulator is between the first gate conductor and the surface of the fin. Additionally, a second gate insulator contacts the planar portion between the end surface and the fin. A second gate conductor contacts the second gate insulator, and the second gate insulator is between the second gate conductor and the surface of the planar portion.
    Type: Application
    Filed: April 26, 2017
    Publication date: August 10, 2017
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Robert J. Gauthier, JR., Tom C. Lee, You Li, Rahul Mishra, Souvick Mitra, Andreas Scholze
  • Publication number: 20170207333
    Abstract: A gate-all around fin double diffused metal oxide semiconductor (DMOS) devices and methods of manufacture are disclosed. The method includes forming a plurality of fin structures from a substrate. The method further includes forming a well of a first conductivity type and a second conductivity type within the substrate and corresponding fin structures of the plurality of fin structures. The method further includes forming a source contact on an exposed portion of a first fin structure. The method further comprises forming drain contacts on exposed portions of adjacent fin structures to the first fin structure. The method further includes forming a gate structure in a dielectric fill material about the first fin structure and extending over the well of the first conductivity type.
    Type: Application
    Filed: March 30, 2017
    Publication date: July 20, 2017
    Inventors: John B. CAMPI, Jr., Robert J. GAUTHIER, Jr., Rahul MISHRA, Souvick MITRA, Mujahid MUHAMMAD
  • Publication number: 20170207341
    Abstract: A gate-all around fin double diffused metal oxide semiconductor (DMOS) devices and methods of manufacture are disclosed. The method includes forming a plurality of fin structures from a substrate. The method further includes forming a well of a first conductivity type and a second conductivity type within the substrate and corresponding fin structures of the plurality of fin structures. The method further includes forming a source contact on an exposed portion of a first fin structure. The method further comprises forming drain contacts on exposed portions of adjacent fin structures to the first fin structure. The method further includes forming a gate structure in a dielectric fill material about the first fin structure and extending over the well of the first conductivity type.
    Type: Application
    Filed: March 30, 2017
    Publication date: July 20, 2017
    Inventors: John B. CAMPI, Jr., Robert J. GAUTHIER, Jr., Rahul MISHRA, Souvick MITRA, Mujahid MUHAMMAD
  • Publication number: 20170207340
    Abstract: A gate-all around fin double diffused metal oxide semiconductor (DMOS) devices and methods of manufacture are disclosed. The method includes forming a plurality of fin structures from a substrate. The method further includes forming a well of a first conductivity type and a second conductivity type within the substrate and corresponding fin structures of the plurality of fin structures. The method further includes forming a source contact on an exposed portion of a first fin structure. The method further comprises forming drain contacts on exposed portions of adjacent fin structures to the first fin structure. The method further includes forming a gate structure in a dielectric fill material about the first fin structure and extending over the well of the first conductivity type.
    Type: Application
    Filed: March 30, 2017
    Publication date: July 20, 2017
    Inventors: John B. CAMPI, JR., Robert J. GAUTHIER, JR., Rahul MISHRA, Souvick MITRA, Mujahid MUHAMMAD
  • Patent number: 9704852
    Abstract: Field effect diode structures utilize a junction structure that has an L-shape in cross-section (a fin extending from a planar portion). An anode is positioned at the top surface of the fin, and a cathode is positioned at the end surface of the planar portion. The perpendicularity of the fin and the planar portion cause the anode and cathode to be perpendicular to one another. A first gate insulator contacts the fin between the top surface and the planar portion. A first gate conductor contacts the first gate insulator, and the first gate insulator is between the first gate conductor and the surface of the fin. Additionally, a second gate insulator contacts the planar portion between the end surface and the fin. A second gate conductor contacts the second gate insulator, and the second gate insulator is between the second gate conductor and the surface of the planar portion.
    Type: Grant
    Filed: April 28, 2016
    Date of Patent: July 11, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Robert J. Gauthier, Jr., Tom C. Lee, You Li, Rahul Mishra, Souvick Mitra, Andreas Scholze
  • Patent number: 9684029
    Abstract: An approach for transmission line pulse and very fast transmission line pulse reflection control is provided. The approach includes using a power splitter to split an incident pulse into two identical pulses with one going to a device under test (DUT) through a delivery cable and the other going down an open ended delay cable. The structure of the power splitter, along with having the delivery cable and the open ended delay cable with the same signal propagation time and pulse transmission characteristics enable the canceling of pulse reflections from the DUT.
    Type: Grant
    Filed: October 6, 2014
    Date of Patent: June 20, 2017
    Assignees: International Business Machines Corporation, Grund Technical Solutions
    Inventors: Shunhua T. Chang, Robert J. Gauthier, Jr., Evan Grund
  • Publication number: 20170162569
    Abstract: A gate-all around fin double diffused metal oxide semiconductor (DMOS) devices and methods of manufacture are disclosed. The method includes forming a plurality of fin structures from a substrate. The method further includes forming a well of a first conductivity type and a second conductivity type within the substrate and corresponding fin structures of the plurality of fin structures. The method further includes forming a source contact on an exposed portion of a first fin structure. The method further comprises forming drain contacts on exposed portions of adjacent fin structures to the first fin structure. The method further includes forming a gate structure in a dielectric fill material about the first fin structure and extending over the well of the first conductivity type.
    Type: Application
    Filed: February 24, 2017
    Publication date: June 8, 2017
    Inventors: John B. CAMPI, JR., Robert J. GAUTHIER, JR., Rahul MISHRA, Souvick MITRA, Mujahid MUHAMMAD
  • Publication number: 20170162673
    Abstract: A gate-all around fin double diffused metal oxide semiconductor (DMOS) devices and methods of manufacture are disclosed. The method includes forming a plurality of fin structures from a substrate. The method further includes forming a well of a first conductivity type and a second conductivity type within the substrate and corresponding fin structures of the plurality of fin structures. The method further includes forming a source contact on an exposed portion of a first fin structure. The method further comprises forming drain contacts on exposed portions of adjacent fin structures to the first fin structure. The method further includes forming a gate structure in a dielectric fill material about the first fin structure and extending over the well of the first conductivity type.
    Type: Application
    Filed: February 24, 2017
    Publication date: June 8, 2017
    Inventors: John B. CAMPI, JR., Robert J. GAUTHIER, JR., Rahul MISHRA, Souvick MITRA, Mujahid MUHAMMAD
  • Publication number: 20170133839
    Abstract: An integrated circuit having a CML driver including a driver biasing network. A first output pad and a second output pad are connected to a voltage pad. A first driver is connected to the first output pad and the voltage pad. A second driver is connected to the second output pad and the voltage pad. A first ESD circuit is connected to the voltage pad, the first output pad, and the first driver. A second ESD circuit is connected to the voltage pad, the second output pad, and the second driver. The first ESD circuit biases the first driver toward a voltage of the voltage pad when an ESD event occurs at the first output pad, and the second ESD circuit biases the second driver toward the voltage of the voltage pad when an ESD event occurs at the second output pad.
    Type: Application
    Filed: January 5, 2017
    Publication date: May 11, 2017
    Applicant: International Business Machines Corporation
    Inventors: James P. Di Sarro, Robert J. Gauthier, JR., Nathan D. Jack, JunJun Li, Souvick Mitra
  • Publication number: 20170125598
    Abstract: A gate-all around fin double diffused metal oxide semiconductor (DMOS) devices and methods of manufacture are disclosed. The method includes forming a plurality of fin structures from a substrate. The method further includes forming a well of a first conductivity type and a second conductivity type within the substrate and corresponding fin structures of the plurality of fin structures. The method further includes forming a source contact on an exposed portion of a first fin structure. The method further comprises forming drain contacts on exposed portions of adjacent fin structures to the first fin structure. The method further includes forming a gate structure in a dielectric fill material about the first fin structure and extending over the well of the first conductivity type.
    Type: Application
    Filed: January 10, 2017
    Publication date: May 4, 2017
    Inventors: John B. CAMPI, JR., Robert J. GAUTHIER, JR., Rahul MISHRA, Souvick MITRA, Mujahid MUHAMMAD
  • Patent number: 9620497
    Abstract: An integrated circuit having a CML driver including a driver biasing network. A first output pad and a second output pad are connected to a voltage pad. A first driver is connected to the first output pad and the voltage pad. A second driver is connected to the second output pad and the voltage pad. A first ESD circuit is connected to the voltage pad, the first output pad, and the first driver. A second ESD circuit is connected to the voltage pad, the second output pad, and the second driver. The first ESD circuit biases the first driver toward a voltage of the voltage pad when an ESD event occurs at the first output pad, and the second ESD circuit biases the second driver toward the voltage of the voltage pad when an ESD event occurs at the second output pad.
    Type: Grant
    Filed: August 17, 2015
    Date of Patent: April 11, 2017
    Assignee: International Business Machines Corporation
    Inventors: James P. Di Sarro, Robert J. Gauthier, Jr., Nathan D. Jack, JunJun Li, Souvick Mitra
  • Patent number: 9590108
    Abstract: A gate-all around fin double diffused metal oxide semiconductor (DMOS) devices and methods of manufacture are disclosed. The method includes forming a plurality of fin structures from a substrate. The method further includes forming a well of a first conductivity type and a second conductivity type within the substrate and corresponding fin structures of the plurality of fin structures. The method further includes forming a source contact on an exposed portion of a first fin structure. The method further comprises forming drain contacts on exposed portions of adjacent fin structures to the first fin structure. The method further includes forming a gate structure in a dielectric fill material about the first fin structure and extending over the well of the first conductivity type.
    Type: Grant
    Filed: January 14, 2016
    Date of Patent: March 7, 2017
    Assignee: International Business Machines Corporation
    Inventors: John B. Campi, Jr., Robert J. Gauthier, Jr., Rahul Mishra, Souvick Mitra, Mujahid Muhammad
  • Patent number: 9575115
    Abstract: A system and method sorts integrated circuit devices. Integrated circuit devices are manufactured on a wafer according to an integrated circuit design using manufacturing equipment. The design produces integrated circuit devices that are identically designed and perform differently based on manufacturing process variations. The integrated circuit devices are for use in a range of environmental conditions, when placed in service. Testing is performed on the integrated circuit devices. Environmental maximums are individually predicted for each device. The environmental maximums comprise ones of the environmental conditions that must not be exceeded for each device to perform above a given failure rate. Each integrated circuit device is assigned at least one of a plurality of grades based on the environmental maximums predicted for each device.
    Type: Grant
    Filed: October 11, 2012
    Date of Patent: February 21, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Nathaniel R. Chadwick, James P. Di Sarro, Robert J. Gauthier, Jr., Tom C. Lee, Junjun Li, Souvick Mitra, Kirk D. Peterson, Andrew A. Turner
  • Patent number: 9536870
    Abstract: An electrostatic discharge protection circuit is disclosed. A method of manufacturing a semiconductor structure includes forming a semiconductor controlled rectifier including a first plurality of fingers between an n-well body contact and an anode in an n-well, and a second plurality of fingers between a p-well body contact and a cathode in a p-well.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: January 3, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: James P. Di Sarro, Robert J. Gauthier, Jr., Tom C. Lee, Junjun Li, Souvick Mitra, Christopher S. Putnam
  • Publication number: 20160379972
    Abstract: Field effect diode structures utilize a junction structure that has an L-shape in cross-section (a fin extending from a planar portion). An anode is positioned at the top surface of the fin, and a cathode is positioned at the end surface of the planar portion. The perpendicularity of the fin and the planar portion cause the anode and cathode to be perpendicular to one another. A first gate insulator contacts the fin between the top surface and the planar portion. A first gate conductor contacts the first gate insulator, and the first gate insulator is between the first gate conductor and the surface of the fin. Additionally, a second gate insulator contacts the planar portion between the end surface and the fin. A second gate conductor contacts the second gate insulator, and the second gate insulator is between the second gate conductor and the surface of the planar portion.
    Type: Application
    Filed: April 28, 2016
    Publication date: December 29, 2016
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Robert J. Gauthier, JR., Tom C. Lee, You Li, Rahul Mishra, Souvick Mitra, Andreas Scholze
  • Publication number: 20160284852
    Abstract: A gate-all around fin double diffused metal oxide semiconductor (DMOS) devices and methods of manufacture are disclosed. The method includes forming a plurality of fin structures from a substrate. The method further includes forming a well of a first conductivity type and a second conductivity type within the substrate and corresponding fin structures of the plurality of fin structures. The method further includes forming a source contact on an exposed portion of a first fin structure. The method further comprises forming drain contacts on exposed portions of adjacent fin structures to the first fin structure. The method further includes forming a gate structure in a dielectric fill material about the first fin structure and extending over the well of the first conductivity type.
    Type: Application
    Filed: June 2, 2016
    Publication date: September 29, 2016
    Inventors: John B. CAMPI, JR., Robert J. GAUTHIER, JR., Rahul MISHRA, Souvick MITRA, Mujahid MUHAMMAD
  • Patent number: 9453878
    Abstract: Disclosed is a test structure that can be used to characterize a specific interface resistance within a multi-layer conductive structure, such as a multi-layer ohmic contact. In the test structure first and second transmission line model (TLM) structures both incorporate a row of essentially identical contact pads separated by spaces with progressively increasing lengths. Conductive mesas, also with progressively increasing lengths, are positioned within the spaces between all but the initial pair of adjacent contacts pads. The first and second TLM structures differ only with respect to the presence of a single conductive layer on each of the conductive mesas. System, method and computer program product embodiments are able to extract resistance parameters associated with the first and second TLM structures, including conductive mesa to conductive layer interface resistances, based current-voltage measurements acquired from both of the TLM structures.
    Type: Grant
    Filed: February 26, 2013
    Date of Patent: September 27, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: John B. Campi, Jr., Robert J. Gauthier, Jr., Junjun Li, Souvick Mitra