Patents by Inventor Robert J. Lee

Robert J. Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250149642
    Abstract: Embodiments of a method for the preparation of an electrode assembly, include removing a population of negative electrode subunits from a negative electrode sheet, the negative electrode sheet comprising a negative electrode sheet edge margin and at least one negative electrode sheet weakened region that is internal to the negative electrode sheet edge margin, removing a population of separator layer subunits from a separator sheet, and removing a population of positive electrode subunits from a positive electrode sheet, the positive electrode sheet comprising a positive electrode edge margin and at least one positive electrode sheet weakened region that is internal to the positive electrode sheet edge margin, and stacking members of the negative electrode subunit population, the separator layer subunit population and the positive electrode subunit population in a stacking direction to form a stacked population of unit cells.
    Type: Application
    Filed: November 19, 2024
    Publication date: May 8, 2025
    Inventors: Robert S. BUSACCA, Ashok LAHIRI, Murali RAMASUBRAMANIAN, Bruno A. VALDES, Gardner Cameron DALES, Harrold J. RUST, III, John F. VARNI, Kim Han LEE, Nirav S. SHAH, Richard J. CONTRERAS, Jeremie J. DALTON, Jonathan C. DOAN, Michael J. ARMSTRONG, Anthony CALCATERRA, Benjamin J. CARDOZO, Joshua David WINANS, Neelam SINGH, Jeffrey Glenn BUCK, Thomas John SCHUERLEIN, Kim Lester FORTUNATI, Neal SARSWAT
  • Publication number: 20250105283
    Abstract: Embodiments of secondary batteries having electrode assemblies are provided. A secondary battery can comprise an electrode assembly having a stacked series of layers, the stacked series of layers having an offset between electrode and counter-electrode layers in a unit cell member of the stacked series. A set of constraints can be provided with a primary constraint system with first and second primary growth constraints separated from each other in a longitudinal direction, and connected by at least one primary connecting member, and a secondary constraint system comprises first and second secondary growth constraints separated in a second direction and connected by members of the stacked series of layers. The primary constraint system may at least partially restrain growth of the electrode assembly in the longitudinal direction, and the secondary constraint system may at least partially restrain growth in the second direction that is orthogonal to the longitudinal direction.
    Type: Application
    Filed: December 9, 2024
    Publication date: March 27, 2025
    Inventors: Robert S. Busacca, Ashok Lahiri, Murali Ramasubramanian, Bruno A. Valdes, Gardner Cameron Dales, Christopher J. Spindt, Geoffrey Matthew Ho, Harrold J. Rust, III, James D. Wilcox, John F. Varni, Kim Han Lee, Nirav S. Shah, Richard J. Contreras, Lynn Van Erden, Ken S. Matsubayashi, Jeremie J. Dalton, Jason Newton Howard, Robert Keith Rosen, Jonathan C. Doan, Michael J. Armstrong, Anthony Calcaterra, Benjamin L. Cardozo, Joshua David Winans, Neelam Singh, Jeffrey Glenn Buck, Thomas John Schuerlein, Kim Lester Fortunati, Neal Sarswat
  • Publication number: 20250103397
    Abstract: Techniques for quality of service (QoS) support for input/output devices and other agents are described. In embodiments, a processing device includes execution circuitry to execute a plurality of software threads; hardware to control monitoring or allocating, among the plurality of software threads, one or more shared resources; and configuration storage to enable the monitoring or allocating of the one or more shared resources among the plurality of software threads and one or more channels through which one or more devices are to be connected to the one or more shared resources.
    Type: Application
    Filed: December 30, 2023
    Publication date: March 27, 2025
    Applicant: Intel Corporation
    Inventors: Andrew J. Herdrich, Daniel Joe, Filip Schmole, Philip Abraham, Stephen R. Van Doren, Priya Autee, Rajesh M. Sankaran, Anthony Luck, Philip Lantz, Eric Wehage, Edwin Verplanke, James Coleman, Scott Oehrlein, David M. Lee, Lee Albion, David Harriman, Vinit Mathew Abraham, Yi-Feng Liu, Manjula Peddireddy, Robert G. Blankenship
  • Patent number: 12255353
    Abstract: Secondary batteries and methods of manufacture thereof are provided. A secondary battery can comprise an electrode layer comprising a population of spacer structures comprising a material other than the electrode active material, wherein (a) the spacer population occupies a total volume within the electrode layer within the range of about 0.1% to about 35% of the volume, VE, of the electrode layer, and (b) a member of the spacer population is located within each subvolume of the electrode layer comprising (i) at least 25% of the volume, VE, of the electrode layer, and (ii) bounded on all sides by (aa) the unit cell portion of the electrode current collector, (bb) the separator layer, (cc) the top surface of the electrode layer, (dd) the bottom surface of the electrode layer, (ee) the first end surface of the electrode layer, and (ff) the second end surface of the electrode layer.
    Type: Grant
    Filed: November 12, 2021
    Date of Patent: March 18, 2025
    Assignee: Enovix Corporation
    Inventors: Jeremie J. Dalton, Robert S. Busacca, Ashok Lahiri, Murali Ramasubramanian, Bruno A. Valdes, Kim Han Lee, Anthony Calcaterra, Benjamin L. Cardozo
  • Patent number: 12243496
    Abstract: Often when there is a glare on a display screen the user may be able to mitigate the glare by tilting or otherwise moving the screen or changing their viewing position. However, when driving a car there are limited options for overcoming glares on the dashboard, especially when you are driving for a long distance in the same direction. Embodiments are directed to eliminating such glare. Other embodiments are related to mixed reality (MR) and filling in occluded areas.
    Type: Grant
    Filed: May 24, 2023
    Date of Patent: March 4, 2025
    Assignee: Intel Corporation
    Inventors: Arthur J. Runyan, Richmond Hicks, Nausheen Ansari, Narayan Biswal, Ya-Ti Peng, Abhishek R. Appu, Wen-Fu Kao, Sang-Hee Lee, Joydeep Ray, Changliang Wang, Satyanarayana Avadhanam, Scott Janus, Gary Smith, Nilesh V. Shah, Keith W. Rowe, Robert J. Johnston
  • Publication number: 20250046812
    Abstract: Secondary batteries and methods of manufacture thereof are provided. A secondary battery can comprise an offset between electrode and counter-electrode layers in a unit cell. Secondary batteries can be prepared by removing a population of negative electrode subunits from a negative electrode sheet, the negative electrode sheet comprising a negative electrode sheet edge margin and at least one negative electrode sheet weakened region that is internal to the negative electrode sheet edge margin, removing a population of separator layer subunits from a separator sheet, and removing a population of positive electrode subunits from a positive electrode sheet, the positive electrode sheet comprising a positive electrode edge margin and at least one positive electrode sheet weakened region that is internal to the positive electrode sheet edge margin, and stacking members of the negative electrode subunit population, the separator layer subunit population and the positive electrode subunit population.
    Type: Application
    Filed: August 5, 2024
    Publication date: February 6, 2025
    Inventors: Robert S. Busacca, Ashok Lahiri, Murali Ramasubramanian, Bruno A. Valdes, Gardner Cameron Dales, Christopher J. Spindt, Geoffrey Matthew Ho, Harrold J. Rust, III, James D. Wilcox, John F. Varni, Kim Han Lee, Nirav S. Shah, Richard J. Contreras, Lynn Van Erden, Ken S. Matsubayashi, Jeremie J. Dalton, Jason Newton Howard, Robert Keith Rosen, Jonathan C. Doan, Michael J. Armstrong, Anthony Calcaterra, Benjamin L. Cardozo, Joshua David Winans, Neelam Singh, Jeffrey Glenn Buck, Thomas John Schuerlein, Kim Lester Fortunati, Neal Sarswat
  • Publication number: 20250046879
    Abstract: A secondary battery for cycling between a charged and a discharged state, wherein a 2D map of the median vertical position of the first opposing vertical end surface of the electrode active material in the X-Z plane, along the length LE of the electrode active material layer, traces a first vertical end surface plot, EVP1, a 2D map of the median vertical position of the first opposing vertical end surface of the counter-electrode active material layer in the X-Z plane, along the length LC of the counter-electrode active material layer, traces a first vertical end surface plot, CEVP1, wherein for at least 60% of the length Lc of the first counter-electrode active material layer (i) the absolute value of a separation distance, SZ1, between the plots EVP1 and CEVP1 measured in the vertical direction is 1000 ?m?|SZ1|?5 ?m.
    Type: Application
    Filed: August 13, 2024
    Publication date: February 6, 2025
    Inventors: Robert S. Busacca, Ashok Lahiri, Murali Ramasubramanian, Bruno A. Valdes, Gardner Cameron Dales, Christopher J. Spindt, Geoffrey Matthew Ho, Harrold J. Rust, III, James D. Wilcox, John F. Varni, Kim Han Lee, Nirav S. Shah, Richard J. Contreras, Lynn Van Erden, Ken S. Matsubayashi, Jeremie J. Dalton, Jason Newton Howard, Robert Keith Rosen
  • Patent number: 12206106
    Abstract: Embodiments of secondary batteries having electrode assemblies are provided. A secondary battery can comprise an electrode assembly having a stacked series of layers, the stacked series of layers having an offset between electrode and counter-electrode layers in a unit cell member of the stacked series. A set of constraints can be provided with a primary constraint system with first and second primary growth constraints separated from each other in a longitudinal direction, and connected by at least one primary connecting member, and a secondary constraint system comprises first and second secondary growth constraints separated in a second direction and connected by members of the stacked series of layers. The primary constraint system may at least partially restrain growth of the electrode assembly in the longitudinal direction, and the secondary constraint system may at least partially restrain growth in the second direction that is orthogonal to the longitudinal direction.
    Type: Grant
    Filed: February 17, 2022
    Date of Patent: January 21, 2025
    Assignee: Enovix Corporation
    Inventors: Robert S. Busacca, Ashok Lahiri, Murali Ramasubramanian, Bruno A. Valdes, Gardner Cameron Dales, Christopher J. Spindt, Geoffrey Matthew Ho, Harrold J. Rust, III, James D. Wilcox, John F. Varni, Kim Han Lee, Nirav S. Shah, Richard J. Contreras, Lynn Van Erden, Ken S. Matsubayashi, Jeremie J. Dalton, Jason Newton Howard, Robert Keith Rosen, Jonathan C. Doan, Michael J. Armstrong, Anthony Calcaterra, Benjamin L. Cardozo, Joshua David Winans, Neelam Singh, Jeffrey Glenn Buck, Thomas John Schuerlein, Kim Lester Fortunati, Neal Sarswat
  • Publication number: 20240083706
    Abstract: A tape applicator including a housing and an adjustment mechanism. The housing partially defines a cavity. The adjustment mechanism includes a course and an adjustment plate. The course includes a plurality of positions. The adjustment plate is movable along the course among the plurality of positions. The adjustment plate is held in a selected position of the plurality of positions by the housing based on a size of a tape roll configured to be supported in the cavity.
    Type: Application
    Filed: September 13, 2022
    Publication date: March 14, 2024
    Inventors: Drew A. Dahill, Ryan A. Hirtz, Robert J. Lee
  • Publication number: 20240060069
    Abstract: The invention relates to the inhibition of mutant KRAS sequences using RNA interference (RNAi). In addition, the present invention provides lipid nanoparticle (LNP) compositions as delivery vehicles for RNAi agents and methods of administering them for therapeutic purposes.
    Type: Application
    Filed: October 20, 2023
    Publication date: February 22, 2024
    Inventors: Raj CHAKRABARTI, Robert J. LEE, Thomas DELACROIX, Gauthier ERRASTI, Coralie LEBLEU, Anisha GHOSH, Ioanna PETROUNIA
  • Publication number: 20230144186
    Abstract: The invention provides methods and compositions for assaying infectivity of viruses and potential treatments of such viruses in the upper respiratory tract using an air-liquid interface model with nasal epithelium cells; and treatment of viral infections of the upper respiratory tract by treating with bitter taste receptor agonists that stimulate NO production and/or antimicrobial protein production.
    Type: Application
    Filed: April 21, 2021
    Publication date: May 11, 2023
    Inventors: Noam Cohen, Robert J. Lee, Susan R. Weiss, Joel N. Maslow, Christine C. Roberts, Sara Cherry, Michael Kohanski, Nithin D. Adappa, James N. Palmer, Li Hui Tan
  • Publication number: 20210290779
    Abstract: The invention provides methods and compositions for the diagnosis, prognosis and treatment of respiratory tract diseases. Specifically, the invention provides diagnosis, prognosis and treatment of respiratory infections using bitter and sweet taste signal transduction pathways. In one aspect, the invention relates to a method for treating a respiratory infection by administering a composition to the respiratory tract of a subject in an amount capable of activating bitter taste signaling and/or inhibiting sweet taste signaling. The composition comprises at least a bitter receptor agonist and, optionally, a pharmaceutically acceptable carrier for delivering the composition to the respiratory tract. In another aspect, the invention relates to a composition for treatment of a respiratory infection. Such composition comprises at least a bitter receptor agonist and, optionally, a pharmaceutically acceptable carrier for delivering the composition to the respiratory tract.
    Type: Application
    Filed: December 3, 2020
    Publication date: September 23, 2021
    Applicants: THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA, MONELL CHEMICAL SENSES CENTER, THE UNITED STATES GOVERNMENT AS REPRESENTED BY THE DEPARTMENT OF VETERANS AF
    Inventors: Noam A COHEN, Robert J. LEE, Danielle R. REED
  • Publication number: 20210260144
    Abstract: The invention provides methods and compositions for assaying infectivity of viruses and potential treatments of such viruses in the upper respiratory tract using an air-liquid interface model with nasal epithelium cells; and treatment of viral infections of the upper respiratory tract by treating with bitter taste receptor agonists that stimulate NO production and/or antimicrobial protein production.
    Type: Application
    Filed: April 21, 2021
    Publication date: August 26, 2021
    Applicants: The Trustees of the University of Pennsylvania, Monell Chemical Senses Center, GeneOne Life Science, Inc.
    Inventors: Noam A. Cohen, Robert J. Lee, Susan R. Weiss, Joel N. Maslow, Christine C. Roberts, Sara Cherry, Michael Kohanski, Nithin D. Adappa, James N. Palmer, Li Hui Tan
  • Patent number: 10881698
    Abstract: The invention provides methods and compositions for the diagnosis, prognosis and treatment of respiratory tract diseases. Specifically, the invention provides diagnosis, prognosis and treatment of respiratory infections using bitter and sweet taste signal transduction pathways. In one aspect, the invention relates to a method for treating a respiratory infection by administering a composition to the respiratory tract of a subject in an amount capable of activating bitter taste signaling and/or inhibiting sweet taste signaling. The composition comprises at least a bitter receptor agonist and, optionally, a pharmaceutically acceptable carrier for delivering the composition to the respiratory tract. In another aspect, the invention relates to a composition for treatment of a respiratory infection. Such composition comprises at least a bitter receptor agonist and, optionally, a pharmaceutically acceptable carrier for delivering the composition to the respiratory tract.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: January 5, 2021
    Assignees: THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA, MONELL CHEMICAL SENSES CENTER, THE UNITED STATES GOVERNMENT AS REPRESENTED BY THE DEPARTMENT OF VETERANS AFFAIRS
    Inventors: Noam A. Cohen, Robert J. Lee, Danielle R. Reed
  • Publication number: 20200179341
    Abstract: Disclosed herein are methods and compositions for treating multiple myeloma, and for enhancing antibody-dependent cellular toxicity (ADCC). Specifically, disclosed herein are methods of using antagonists of the aryl hydrocarbon receptor (AHR) to treat multiple myeloma and enhance ADCC. Also specifically disclosed is liposomal CH233191.
    Type: Application
    Filed: November 6, 2017
    Publication date: June 11, 2020
    Applicant: Ohio State Innovation Foundation
    Inventors: Don BENSON, Tiffany HUGHES, Robert J. LEE
  • Patent number: 10555910
    Abstract: Methods for inhibiting oligonucleotide activity in vitro or in vivo to a cell that are formulated with at least one oligonucleotide encapsulated in a lipid nanoparticle are disclosed.
    Type: Grant
    Filed: October 31, 2017
    Date of Patent: February 11, 2020
    Assignee: Ohio State Innovation Foundation
    Inventor: Robert J. Lee
  • Patent number: 10307490
    Abstract: Described is a lipid nanoparticle composition that includes a macromolecule conjugated to a polymer and a targeting agent. The composition can include a therapeutic agent. The therapeutic agent can be an antisense oligonucleotide (ASO). Exemplary ASOs are targeted to a portion of a nucleic acid encoding Akt-1, and which modulates the expression of Akt-1; or targeted to a portion of a nucleic acid encoding HIF-1, and which modulates the expression of HIF-1. Also described is a lipid nanoparticle composition that includes a macromolecule conjugated to a polymer and a therapeutic agent that is an ASO such as an ASO targeted to a portion of a nucleic acid encoding Akt-1, and which modulates the expression of Akt-1 or an ASO targeted to a portion of a nucleic acid encoding HIF-1, and which modulates the expression of HIF-1. Pharmaceutical formulations, methods of making the lipid nanoparticles, and methods of using the lipid nanoparticles, for example for treating cancers, are also disclosed.
    Type: Grant
    Filed: May 23, 2013
    Date of Patent: June 4, 2019
    Assignee: The Ohio State University
    Inventors: Robert J. Lee, Young Bok Lee, Deog Joong Kim, Chang Ho Ahn
  • Publication number: 20180049991
    Abstract: Methods for inhibiting oligonucleotide activity in vitro or in vivo to a cell that are formulated with at least one oligonucleotide encapsulated in a lipid nanoparticle are disclosed.
    Type: Application
    Filed: October 31, 2017
    Publication date: February 22, 2018
    Applicant: Ohio State Innovation Foundation
    Inventor: Robert J. Lee
  • Publication number: 20180021447
    Abstract: Lipid nanoparticle formulations, methods of making, and methods of using same are disclosed.
    Type: Application
    Filed: August 29, 2017
    Publication date: January 25, 2018
    Applicant: Ohio State Innovation Foundation
    Inventor: Robert J. Lee
  • Patent number: 9833416
    Abstract: Compositions for inhibiting oligonucleotide activity in vitro or in vivo to a cell that are formulated with at least one oligonucleotide encapsulated in a lipid nanoparticle, methods of making, and methods of using the same are disclosed.
    Type: Grant
    Filed: April 3, 2015
    Date of Patent: December 5, 2017
    Assignee: OHIO STATE INNOVATION FOUNDATION
    Inventor: Robert J. Lee