Patents by Inventor Robert John Stephenson

Robert John Stephenson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240063268
    Abstract: A method for making a semiconductor device may include forming a superlattice adjacent a semiconductor layer. The superlattice may include a plurality of stacked groups of layers, with each group of layers including a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. The at least one non-semiconductor monolayer in a first group of layers of the superlattice may comprise oxygen and be devoid of carbon, and the at least one non-semiconductor monolayer in a second group of layers of the superlattice may comprise carbon.
    Type: Application
    Filed: November 3, 2023
    Publication date: February 22, 2024
    Inventors: KEITH DORAN WEEKS, NYLES WYNN CODY, MAREK HYTHA, ROBERT J. MEARS, ROBERT JOHN STEPHENSON, HIDEKI TAKEUCHI
  • Patent number: 11848356
    Abstract: A method for making a semiconductor device may include forming a superlattice adjacent a semiconductor layer. The superlattice may include a plurality of stacked groups of layers, with each group of layers including a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. The at least one non-semiconductor monolayer in a first group of layers of the superlattice may comprise oxygen and be devoid of carbon, and the at least one non-semiconductor monolayer in a second group of layers of the superlattice may comprise carbon.
    Type: Grant
    Filed: June 30, 2021
    Date of Patent: December 19, 2023
    Assignee: ATOMERA INCORPORATED
    Inventors: Keith Doran Weeks, Nyles Wynn Cody, Marek Hytha, Robert J. Mears, Robert John Stephenson, Hideki Takeuchi
  • Patent number: 11837634
    Abstract: A semiconductor device may include a semiconductor layer and a superlattice adjacent the semiconductor layer. The superlattice may include a plurality of stacked groups of layers, with each group of layers comprising a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. The at least one non-semiconductor monolayer in a first group of layers of the superlattice may comprise oxygen and be devoid of carbon, and the at least one non-semiconductor monolayer in a second group of layers of the superlattice may comprise carbon.
    Type: Grant
    Filed: June 30, 2021
    Date of Patent: December 5, 2023
    Assignee: ATOMERA INCORPORATED
    Inventors: Keith Doran Weeks, Nyles Wynn Cody, Marek Hytha, Robert J. Mears, Robert John Stephenson, Hideki Takeuchi
  • Patent number: 11664427
    Abstract: A vertical semiconductor device may include a semiconductor substrate having at least one trench therein, and a superlattice layer extending vertically adjacent the at least one trench. The superlattice layer may comprise stacked groups of layers, with each group of layers comprising stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer. Each at least one non-semiconductor monolayer of each group of layers may be constrained within a crystal lattice of adjacent base semiconductor portions. The vertical semiconductor device may also include a doped semiconductor layer adjacent the superlattice layer, and a conductive body adjacent the doped semiconductor layer on a side thereof opposite the superlattice layer and defining a vertical semiconductor device contact.
    Type: Grant
    Filed: May 23, 2022
    Date of Patent: May 30, 2023
    Assignee: ATOMERA INCORPORATED
    Inventors: Robert John Stephenson, Richard Burton, Dmitri Choutov, Nyles Wynn Cody, Daniel Connelly, Robert J. Mears, Erwin Trautmann
  • Patent number: 11664459
    Abstract: A method for making a semiconductor device may include forming an inverted T channel on a substrate, with the inverted T channel comprising a superlattice. The superlattice may include a plurality of stacked groups of layers, with each group of layers comprising a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. The method may further include forming source and drain regions on opposing ends of the inverted T channel, and forming a gate overlying the inverted T channel between the source and drain.
    Type: Grant
    Filed: April 10, 2019
    Date of Patent: May 30, 2023
    Assignee: ATOMERA INCORPORATED
    Inventor: Robert John Stephenson
  • Publication number: 20230122723
    Abstract: A method for making a semiconductor gate-all-around (GAA) device may include forming source and drain regions on a semiconductor substrate, forming a plurality of semiconductor nanostructures extending between the source and drain regions, and forming a gate surrounding the plurality of semiconductor nanostructures in a gate-all-around arrangement. Furthermore, the method may include forming at least one superlattice may be within at least one of the nanostructures. The at least one superlattice may include a plurality of stacked groups of layers, with each group of layers including a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions.
    Type: Application
    Filed: December 21, 2022
    Publication date: April 20, 2023
    Inventors: KEITH DORAN WEEKS, NYLES WYNN CODY, MAREK HYTHA, ROBERT J. MEARS, ROBERT JOHN STEPHENSON, HIDEKI TAKEUCHI
  • Publication number: 20230121774
    Abstract: A semiconductor gate-all-around (GAA) device may include a semiconductor substrate, source and drain regions on the semiconductor substrate, a plurality of semiconductor nanostructures extending between the source and drain regions, and a gate surrounding the plurality of semiconductor nanostructures in a gate-all-around arrangement. Furthermore, at least one superlattice may be within at least one of the nanostructures. The at least one superlattice may include a plurality of stacked groups of layers, with each group of layers including a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions.
    Type: Application
    Filed: December 21, 2022
    Publication date: April 20, 2023
    Inventors: KEITH DORAN WEEKS, NYLES WYNN CODY, MAREK HYTHA, ROBERT J. MEARS, ROBERT JOHN STEPHENSON, HIDEKI TAKEUCHI
  • Publication number: 20220285498
    Abstract: A vertical semiconductor device may include a semiconductor substrate having at least one trench therein, and a superlattice layer extending vertically adjacent the at least one trench. The superlattice layer may comprise stacked groups of layers, with each group of layers comprising stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer. Each at least one non-semiconductor monolayer of each group of layers may be constrained within a crystal lattice of adjacent base semiconductor portions. The vertical semiconductor device may also include a doped semiconductor layer adjacent the superlattice layer, and a conductive body adjacent the doped semiconductor layer on a side thereof opposite the superlattice layer and defining a vertical semiconductor device contact.
    Type: Application
    Filed: May 23, 2022
    Publication date: September 8, 2022
    Inventors: ROBERT JOHN STEPHENSON, RICHARD BURTON, DMITRI CHOUTOV, NYLES WYNN CODY, DANIEL CONNELLY, ROBERT J. MEARS, ERWIN TRAUTMANN
  • Patent number: 11430869
    Abstract: A method for making a semiconductor device may include forming a superlattice on a substrate comprising a plurality of stacked groups of layers, with each group of layers including a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. Moreover, forming at least one of the base semiconductor portions may include overgrowing the at least one base semiconductor portion and etching back the overgrown at least one base semiconductor portion.
    Type: Grant
    Filed: September 14, 2020
    Date of Patent: August 30, 2022
    Assignee: ATOMERA INCORPORATED
    Inventors: Keith Doran Weeks, Nyles Wynn Cody, Marek Hytha, Robert J. Mears, Robert John Stephenson
  • Patent number: 11387325
    Abstract: A vertical semiconductor device may include a semiconductor substrate having at least one trench therein, and a superlattice liner at least partially covering sidewall portions of the at least one trench and defining a gap between opposing sidewall portions of the superlattice liner. The superlattice liner may include a plurality of stacked groups of layers, each group of layers comprising stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer, with each at least one non-semiconductor monolayer of each group being constrained within a crystal lattice of adjacent base semiconductor portions. The device may also include a semiconductor layer on the superlattice liner and including a dopant constrained therein by the superlattice liner, and a conductive body within the at least one trench defining a source contact.
    Type: Grant
    Filed: November 23, 2020
    Date of Patent: July 12, 2022
    Assignee: ATOMERA INCORPORATED
    Inventors: Robert John Stephenson, Richard Burton, Dmitri Choutov, Nyles Wynn Cody, Daniel Connelly, Robert J. Mears, Erwin Trautmann
  • Patent number: 11377374
    Abstract: A method and system for removing at least dissolved hydrogen sulphide or another targeted constituent from a feedstock is provided wherein the targeted constituent has a gas: liquid equilibrium. In some embodiments, the method includes the steps of: contacting the feedstock in at least one stripping vessel with a stripping gas to produce a gas stream containing at least hydrogen sulphide gas; conveying the gas stream from the at least one stripping vessel to an oxidation reactor; contacting the gas stream with an oxidizing agent in the oxidation reactor so as to oxidize the at least hydrogen sulphide gas to produce sulphuric acid; and conveying the produced sulphuric acid from the oxidation reactor to the at least one stripping vessel so as to reduce a pH value of the feedstock within the stripping vessel.
    Type: Grant
    Filed: January 3, 2018
    Date of Patent: July 5, 2022
    Assignee: Muddy River Technologies Inc.
    Inventors: Robert John Stephenson, Peter Douglas Jack
  • Patent number: 11355667
    Abstract: A method for making a semiconductor device may include forming a plurality of waveguides on a substrate, and forming a superlattice overlying the substrate and waveguides. The superlattice may include a plurality of stacked groups of layers, with each group of layers comprising a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. The method may further include forming an active device layer on the superlattice comprising at least one active semiconductor device.
    Type: Grant
    Filed: April 10, 2019
    Date of Patent: June 7, 2022
    Assignee: ATOMERA INCORPORATED
    Inventor: Robert John Stephenson
  • Publication number: 20220033284
    Abstract: Process for treatment of wastewater is provided. The wastewater includes suspended or dissolved wastewater components and an aqueous component. During the treatment process, at least a portion of a solids bed through which the wastewater is passed is dissolved using an electric current. Dissolution of the solids bed produces constituents which react with the wastewater and enable separation of the suspended or dissolved wastewater components from the aqueous component. Also provided is a system for carrying out the process.
    Type: Application
    Filed: September 23, 2019
    Publication date: February 3, 2022
    Inventors: Robert John STEPHENSON, Travis David Wayne REID, Michael Stephen GARDNER
  • Publication number: 20220005927
    Abstract: A method for making a semiconductor device may include forming a superlattice adjacent a semiconductor layer. The superlattice may include a plurality of stacked groups of layers, with each group of layers including a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. The at least one non-semiconductor monolayer in a first group of layers of the superlattice may comprise oxygen and be devoid of carbon, and the at least one non-semiconductor monolayer in a second group of layers of the superlattice may comprise carbon.
    Type: Application
    Filed: June 30, 2021
    Publication date: January 6, 2022
    Inventors: KEITH DORAN WEEKS, NYLES WYNN CODY, MAREK HYTHA, ROBERT J. MEARS, ROBERT JOHN STEPHENSON, HIDEKI TAKEUCHI
  • Publication number: 20220005926
    Abstract: A semiconductor device may include a semiconductor layer and a superlattice adjacent the semiconductor layer. The superlattice may include a plurality of stacked groups of layers, with each group of layers comprising a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. The at least one non-semiconductor monolayer in a first group of layers of the superlattice may comprise oxygen and be devoid of carbon, and the at least one non-semiconductor monolayer in a second group of layers of the superlattice may comprise carbon.
    Type: Application
    Filed: June 30, 2021
    Publication date: January 6, 2022
    Inventors: KEITH DORAN WEEKS, NYLES WYNN CODY, MAREK HYTHA, ROBERT J. MEARS, ROBERT JOHN STEPHENSON, HIDEKI TAKEUCHI
  • Patent number: 11198999
    Abstract: Method and system for treatment of a wastewater stream at a location is disclosed. The wastewater stream includes a floating waste component such as sewer FOG or oil and an aqueous component such as water. The wastewater stream is directed from the location to a separator through an intake which is fluidly connected to the location and the separator. The separator separates the floating waste component from the aqueous component. The separated floating waste component is directed to a floating waste discharge outlet associated with the separator and the separated aqueous component is directed to an aqueous discharge outlet associated with the separator.
    Type: Grant
    Filed: January 31, 2018
    Date of Patent: December 14, 2021
    Assignee: Muddy River Technologies Inc.
    Inventors: Peter Douglas Jack, Robert John Stephenson, Michael Stephen Gardner
  • Patent number: 11075078
    Abstract: A method for making a semiconductor device may include forming an isolation region adjacent an active region in a semiconductor substrate, and selectively etching the active region so that an upper surface of the active region is below an adjacent surface of the isolation region and defining a stepped edge therewith. The method may further include forming a superlattice overlying the active region. The superlattice may include stacked groups of layers, with each group of layers comprising stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions.
    Type: Grant
    Filed: March 6, 2020
    Date of Patent: July 27, 2021
    Assignee: ATOMERA INCORPORATED
    Inventors: Nyles Wynn Cody, Keith Doran Weeks, Robert John Stephenson, Richard Burton, Yi-Ann Chen, Dmitri Choutov, Hideki Takeuchi, Yung-Hsuan Yang
  • Publication number: 20210074814
    Abstract: A vertical semiconductor device may include a semiconductor substrate having at least one trench therein, and a superlattice liner at least partially covering sidewall portions of the at least one trench and defining a gap between opposing sidewall portions of the superlattice liner. The superlattice liner may include a plurality of stacked groups of layers, each group of layers comprising stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer, with each at least one non-semiconductor monolayer of each group being constrained within a crystal lattice of adjacent base semiconductor portions. The device may also include a semiconductor layer on the superlattice liner and including a dopant constrained therein by the superlattice liner, and a conductive body within the at least one trench defining a source contact.
    Type: Application
    Filed: November 23, 2020
    Publication date: March 11, 2021
    Inventors: ROBERT JOHN STEPHENSON, RICHARD BURTON, DMITRI CHOUTOV, NYLES WYNN CODY, DANIEL CONNELLY, ROBERT J. MEARS, ERWIN TRAUTMANN
  • Patent number: 10884185
    Abstract: A semiconductor device may include a substrate having waveguides thereon, and a superlattice overlying the substrate and waveguides. The superlattice may include stacked groups of layers, with each group of layers comprising a stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. The semiconductor device may further include an active device layer on the superlattice including at least one active semiconductor device.
    Type: Grant
    Filed: April 10, 2019
    Date of Patent: January 5, 2021
    Assignee: ATOMERA INCORPORATED
    Inventor: Robert John Stephenson
  • Publication number: 20200411645
    Abstract: A method for making a semiconductor device may include forming a superlattice on a substrate comprising a plurality of stacked groups of layers, with each group of layers including a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. Moreover, forming at least one of the base semiconductor portions may include overgrowing the at least one base semiconductor portion and etching back the overgrown at least one base semiconductor portion.
    Type: Application
    Filed: September 14, 2020
    Publication date: December 31, 2020
    Inventors: KEITH DORAN WEEKS, NYLES WYNN CODY, MAREK HYTHA, ROBERT J. MEARS, ROBERT JOHN STEPHENSON