Patents by Inventor Robert L. Sandstrom

Robert L. Sandstrom has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7682591
    Abstract: The invention is directed to a method of positioning nanoparticles on a patterned substrate. The method comprises providing a patterned substrate with selectively positioned recesses, and applying a solution or suspension of nanoparticles to the patterned substrate to form a wetted substrate. A wiper member is dragged across the surface of the wetted substrate to remove a portion of the applied nanoparticles from the wetted substrate, and leaving a substantial number of the remaining portion of the applied nanoparticles disposed in the selectively positioned recesses of the substrate. The invention is also directed to a method of making carbon nanotubes from the positioned nanoparticles.
    Type: Grant
    Filed: August 25, 2008
    Date of Patent: March 23, 2010
    Assignee: International Business Machines Corporation
    Inventors: Charles T. Black, Christopher B. Murray, Robert L. Sandstrom
  • Publication number: 20090297778
    Abstract: A method for forming self-assembled patterns on a substrate surface is provided. First, a block copolymer layer, which comprises a block copolymer having two or more immiscible polymeric block components, is applied onto a substrate that comprises a substrate surface with a trench therein. The trench specifically includes at least one narrow region flanked by two wide regions, and wherein the trench has a width variation of more than 50%. Annealing is subsequently carried out to effectuate phase separation between the two or more immiscible polymeric block components in the block copolymer layer, thereby forming periodic patterns that are defined by repeating structural units. Specifically, the periodic patterns at the narrow region of the trench are aligned in a predetermined direction and are essentially free of defects. Block copolymer films formed by the above-described method as well as semiconductor structures comprising such block copolymer films are also described.
    Type: Application
    Filed: August 13, 2009
    Publication date: December 3, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Charles T. Black, Ricardo Ruiz, Robert L. Sandstrom
  • Publication number: 20090053129
    Abstract: The invention is directed to a method of positioning nanoparticles on a patterned substrate. The method comprises providing a patterned substrate with selectively positioned recesses, and applying a solution or suspension of nanoparticles to the patterned substrate to form a wetted substrate. A wiper member is dragged across the surface of the wetted substrate to remove a portion of the applied nanoparticles from the wetted substrate, and leaving a substantial number of the remaining portion of the applied nanoparticles disposed in the selectively positioned recesses of the substrate. The invention is also directed to a method of making carbon nanotubes from the positioned nanoparticles.
    Type: Application
    Filed: August 25, 2008
    Publication date: February 26, 2009
    Applicant: International Business Machines Corporation
    Inventors: Charles T. Black, Christopher B. Murray, Robert L. Sandstrom
  • Publication number: 20080230849
    Abstract: A device comprising a doped semiconductor nano-component and a method of forming the device are disclosed. The nano-component is one of a nanotube, nanowire or a nanocrystal film, which may be doped by exposure to an organic amine-containing dopant. Illustrative examples are given for field effect transistors with channels comprising a lead selenide nanowire or nanocrystal film and methods of forming these devices.
    Type: Application
    Filed: May 30, 2008
    Publication date: September 25, 2008
    Applicant: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, Cherie R. Kagan, Christopher B. Murray, Robert L. Sandstrom, Dmitri V. Talapin
  • Patent number: 7405129
    Abstract: A device comprising a doped semiconductor nano-component and a method of forming the device are disclosed. The nano-component is one of a nanotube, nanowire or a nanocrystal film, which may be doped by exposure to an organic amine-containing dopant. Illustrative examples are given for field effect transistors with channels comprising a lead selenide nanowire or nanocrystal film and methods of forming these devices.
    Type: Grant
    Filed: May 26, 2005
    Date of Patent: July 29, 2008
    Assignee: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, Cherie R. Kagan, Christopher B. Murray, Robert L. Sandstrom, Dmitri V. Talapin
  • Publication number: 20080175527
    Abstract: A method in effectuating the redirection of light which is propagated within a waveguide, and which eliminates the necessity for a bending of the waveguide, or the drawbacks encountered in directional changes in propagated light involving the need for sharp curves of essentially small-sized radii, which would resultingly lead to excessive losses in light. In this connection, the method relates to the fabricating and the provision of a wire-grid polarization beam splitter within an optical waveguide, which utilizes a diblock copolymer template to formulate the wire-grid.
    Type: Application
    Filed: October 11, 2007
    Publication date: July 24, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Charles T. Black, Gian-Luca Bona, Timothy J. Dalton, Nicholas C. M. Fuller, Roland Germann, Maurice McGlashan-Powell, Chandrasekhar Narayan, Robert L. Sandstrom
  • Patent number: 7347953
    Abstract: A method for forming self-assembled patterns on a substrate surface is provided. First, a block copolymer layer, which comprises a block copolymer having two or more immiscible polymeric block components, is applied onto a substrate that comprises a substrate surface with a trench therein. The trench specifically includes at least one narrow region flanked by two wide regions, and wherein the trench has a width variation of more than 50%. Annealing is subsequently carried out to effectuate phase separation between the two or more immiscible polymeric block components in the block copolymer layer, thereby forming periodic patterns that are defined by repeating structural units. Specifically, the periodic patterns at the narrow region of the trench are aligned in a predetermined direction and are essentially free of defects. Block copolymer films formed by the above-described method as well as semiconductor structures comprising such block copolymer films are also described.
    Type: Grant
    Filed: February 2, 2006
    Date of Patent: March 25, 2008
    Assignee: International Business Machines Corporation
    Inventors: Charles T. Black, Ricardo Rulz, Robert L. Sandstrom
  • Patent number: 7298935
    Abstract: A method in effectuating the redirection of light which is propagated within a waveguide, and which eliminates the necessity for a bending of the waveguide, or the drawbacks encountered in directional changes in propagated light involving the need for sharp curves of essentially small-sized radii, which would resultingly lead to excessive losses in light. In this connection, the method relates to the fabricating and the provision of a wire-grid polarization beam splitter within an optical waveguide, which utilizes a diblock copolymer template to formulate the wire-grid.
    Type: Grant
    Filed: May 1, 2006
    Date of Patent: November 20, 2007
    Assignee: International Business Machines Corporation
    Inventors: Charles T. Black, Gian-Luca Bona, Timothy J. Dalton, Nicholas C. M. Fuller, Roland Germann, Maurice McGlashan-Powell, Chandrasekhar Narayan, Robert L. Sandstrom
  • Patent number: 7282710
    Abstract: A structure and method for improving the spatial resolution of a scanning probe microscope (SPM) tip, which has been coated with a layer of chemically-synthesized nanoparticles. The nanoparticles are either single-species or heterogeneous, such that the single-species nanoparticles can be either ferromagnetic, paramagnetic, superparamagnetic, antiferromagnetic, ferrimagnetic, magneto-optic, ferroelectric, piezoelectric, superconducting, semiconducting, magnetically-doped semiconducting, insulating, fluorescent, or chemically catalytic. The layer of nanoparticles is at least two nanoparticles thick, or alternatively, is a single layer of nanoparticles thick, or alternatively, is a single layer of nanoparticles thick and covers only the tip apex portion of the tip, or alternatively, only a single nanoparticle is affixed to the tip apex. Alternatively, the layer of nanoparticles is transformed into an electrically-continuous magnetic film by annealing at a high temperature.
    Type: Grant
    Filed: January 2, 2002
    Date of Patent: October 16, 2007
    Assignee: International Business Machines Corporation
    Inventors: Charles T. Black, Adam E. Cohen, Christopher B. Murray, Robert L. Sandstrom
  • Patent number: 6897650
    Abstract: A magnetic-field sensor device comprises at least two electrodes; an insulating layer separating the at least two electrodes; at least one layer of chemically-synthesized magnetic nanoparticles disposed at or above a level with the insulating layer, and disposed between the at least two electrodes; and an organic spacer surrounding each of the chemically-synthesized magnetic nanoparticles. A deviation between diameters of different ones of the nanoparticles is less than 15%. Moreover, the chemically-synthesized magnetic nanoparticles range in size between 2 nm and 20 nm in diameter.
    Type: Grant
    Filed: February 11, 2002
    Date of Patent: May 24, 2005
    Assignee: International Business Machines Corporation
    Inventors: Charles T. Black, Stephen M. Gates, Christopher B. Murray, Robert L. Sandstrom
  • Publication number: 20030151407
    Abstract: A structure and method for forming a magnetic-field sensor device comprises depositing a first electrode onto a substrate. Then, an electrically insulating layer is deposited on the first electrode. Next, a portion of the insulating layer is removed to expose a region of the first electrode, thereby creating an empty space. After this, at least one layer of chemically-synthesized nanoparticles is deposited on the insulating layer and within the empty space. Next, a second electrode is deposited on both the layer of nanoparticles and the insulating layer. Alternatively, multiple layers of nanoparticles may be deposited, or only a single nanoparticle may be deposited. The substrate is either conducting or non-conducting, and the first and second electrodes are electrically conducting and may be magnetic or non-magnetic. Additionally, a metallic layer of magnetic material may be first deposited on the substrate.
    Type: Application
    Filed: February 11, 2002
    Publication date: August 14, 2003
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Charles T. Black, Stephen M. Gates, Christopher B. Murray, Robert L. Sandstrom
  • Patent number: 5882468
    Abstract: By moving a substrate relative to a shadow mask in a reactive ion etching system, we are able to precisely tailor the thickness of critical layers. To minimize disturbing the plasma, all the mechanical components are kept below the anode. The system is highly reproducible, and can be programmed to yield arbitrary vertical profiles along one horizontal axis. Using silicon-on-insulator substrates, the resonance wavelength was modified as a function of position with better than 1 nm control in the vertical dimension. This technique should prove useful for optical devices where the thickness of the layers controls the device characteristics.
    Type: Grant
    Filed: February 24, 1997
    Date of Patent: March 16, 1999
    Assignee: International Business Machines Corporation
    Inventors: John G. Crockett, Bardia Pezeshki, Robert L. Sandstrom
  • Patent number: 4962086
    Abstract: High T.sub.c oxide superconductive films can be formed on gallate layers, where the gallate layers include a rare earth element or a rare earth-like element. Combinations of rare earth elements and rare earth-like elements can also be utilized. The superconductive films can be epitaxially deposited on these gallate layers to form single crystals or, in the minimum, highly oriented superconductive layers. Any high T.sub.c superconductive oxide material can be utilized, but the best lattice matches are to superconductive materials including copper oxides. Examples include Y-Ba-Cu-O systems, Bi-based systems and Tl-based systems.
    Type: Grant
    Filed: June 8, 1988
    Date of Patent: October 9, 1990
    Assignee: International Business Machines Corporation
    Inventors: William J. Gallagher, Edward A. Giess, Aranava Gupta, Robert B. Laibowitz, Eugene J. O'Sullivan, Robert L. Sandstrom
  • Patent number: 4555395
    Abstract: Disclosed are organic treating agents for imparting improved flow properties to hydrides and compositions comprising hydrides treated with an effective amount of an organic compound capable of imparting improved flow properties to said hydride. Also disclosed are methods for improving the flow properties of hydrides comprising treating said hydrides with an organic compound capable of imparting improved flow properties. Said organic treating agent can be in liquid or vapor form and comprises at least one component selected from the group consisting of aliphatic hydrocarbons, alcohols, amines, organic acids and organic acid salts.
    Type: Grant
    Filed: September 27, 1982
    Date of Patent: November 26, 1985
    Assignee: Standard Oil Company
    Inventors: Bruce E. Sirovich, Robert L. Sandstrom, Theo H. Fleisch