Patents by Inventor Robert Michael Morena

Robert Michael Morena has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9340447
    Abstract: The embodiments described herein relate to chemically and mechanically durable glass compositions and pharmaceutical packaging formed from the same. According to one embodiment, a glass for pharmaceutical packaging includes from about 70 mol. % to about 80 mol. % SiO2; from about 4 mol. % to about 8 mol. % alkaline earth oxide, the alkaline earth oxide comprising MgO and CaO; X mol. % Al2O3, wherein X is from about 4 to about 8; and Y mol. % alkali oxide comprising non-zero amounts of Na2O and K2O, wherein Y is about 9-15 mol. % and a ratio of Y:X is greater than 1.
    Type: Grant
    Filed: April 30, 2015
    Date of Patent: May 17, 2016
    Assignee: CORNING INCORPORATED
    Inventors: Paul Stephen Danielson, Steven Edward DeMartino, Melinda Ann Drake, Robert Michael Morena, Santona Pal, Robert Anthony Schaut
  • Patent number: 9327871
    Abstract: Delamination resistant glass containers with heat-tolerant coatings are disclosed. In one embodiment, a glass container may include a glass body having an interior surface, an exterior surface and a wall thickness extending from the exterior surface to the interior surface. At least the interior surface of the glass body is delamination resistant. The glass container may further include a heat-tolerant coating positioned on at least a portion of the exterior surface of the glass body. The heat-tolerant coating may be thermally stable at temperatures greater than or equal to 260° C. for 30 minutes.
    Type: Grant
    Filed: October 18, 2013
    Date of Patent: May 3, 2016
    Assignee: Corning Incorporated
    Inventors: Andrei Gennadyevich Fadeev, Theresa Chang, Dana Craig Bookbinder, Santona Pal, Chandan Kumar Saha, Steven Edward DeMartino, Christopher Lee Timmons, John Stephen Peanasky, Robert Anthony Schaut, Paul Stephen Danielson, Melinda Ann Drake, Robert Michael Morena, Kaveh Adib, James Patrick Hamilton, Susan Lee Schiefelbein
  • Patent number: 9272946
    Abstract: The glass containers described herein have at least two performance attributes selected from resistance to delamination, improved strength, and increased damage resistance. In one embodiment, a glass container with resistance to delamination and improved strength may include a body having an inner surface, an outer surface and a wall thickness extending between the outer surface and the inner surface. At least the inner surface of the body may have a delamination factor less than or equal to 10. The glass container may further include a compressively stressed layer extending from the outer surface of the body into the wall thickness. The compressively stressed layer may have a surface compressive stress greater than or equal to 150 MPa.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: March 1, 2016
    Assignee: CORNING INCORPORATED
    Inventors: Theresa Chang, Paul Stephen Danielson, Steven Edward DeMartino, Andrei Gennadyevich Fadeev, Robert Michael Morena, Santona Pal, John Stephen Peanasky, Robert Anthony Schaut, Natesan Venkataraman, Ronald Luce Verkleeren
  • Patent number: 9266770
    Abstract: The embodiments described herein relate to chemically and mechanically durable glass compositions and pharmaceutical packaging formed from the same. According to one embodiment, a glass for pharmaceutical packaging includes from about 70 mol. % to about 80 mol. % SiO2; from about 4 mol. % to about 8 mol. % alkaline earth oxide, the alkaline earth oxide comprising MgO and CaO; X mol. % Al2O3, wherein X is from about 4 to about 8; and Y mol. % alkali oxide comprising non-zero amounts of Na2O and K2O, wherein Y is about 9-15 mol. % and a ratio of Y:X is greater than 1.
    Type: Grant
    Filed: April 30, 2015
    Date of Patent: February 23, 2016
    Assignee: CORNING INCORPORATED
    Inventors: Paul Stephen Danielson, Steven Edward DeMartino, Melinda Ann Drake, Robert Michael Morena, Santona Pal, Robert Anthony Schaut
  • Publication number: 20150344350
    Abstract: According to one embodiment, a glass composition may include from 67 mol. % to about 75 mol. % SiO2; from about 6 mol. % to about 10 mol. % Al2O3; and from about 5 mol. % to about 12 mol. % alkali oxide. The alkali oxide may include K2O in an amount less than or equal to 0.5 mol. %. The glass composition may further include from about 9 mol. % to about 15 mol. % of alkaline earth oxide. The alkaline earth oxide may include greater than about 0 mol. % and less than or equal to 3 mol. % MgO, from 2 mol. % to about 7 mol % CaO, at least one of SrO and BaO. The glass composition may further include less than 1 mol. % B2O3. A ratio of a concentration of MgO to the sum of the concentration of divalent cations (MgO:?RO) may be less than 0.3.
    Type: Application
    Filed: August 11, 2015
    Publication date: December 3, 2015
    Applicant: Corning Incorporated
    Inventors: Melinda Ann Drake, Robert Michael Morena
  • Publication number: 20150344351
    Abstract: According to one embodiment, a glass article may include SiO2, Al2O3, Li2O and Na2O. The glass article may have a softening point less than or equal to about 810° C. The glass article may also have a high temperature CTE less than or equal to about 27×10?6/° C. The glass article may also be ion exchangeable such that the glass has a compressive stress greater than or equal to about 600 MPa and a depth of layer greater than or equal to about 25 ?m after ion exchange in a salt bath comprising KNO3 at a temperature in a range from about 390° C. to about 450° C. for less than or equal to approximately 15 hours.
    Type: Application
    Filed: August 12, 2015
    Publication date: December 3, 2015
    Inventors: Marie Jacqueline Monique Comte, Melinda Ann Drake, Karen Leslie Geisinger, Sinue Gomez, Robert Michael Morena, Charlene Marie Smith, Randall Eugene Youngman
  • Publication number: 20150336843
    Abstract: A scratch resistant alkali aluminoborosilicate glass. The glass is chemically strengthened and has a surface layer that is rich in silica with respect to the remainder of the glass article. The chemically strengthened glass is then treated with an aqueous solution of a mineral acid other than hydrofluoric acid, such as, for example, HCl, HNO3, H2SO4, or the like, to selective leach elements from the glass and leave behind a silica-rich surface layer. The silica-rich surface layer improves the Knoop scratch threshold of the ion exchanged glass compared to ion exchanged glass that are not treated with the acid solution as well as the post-scratch retained strength of the glass.
    Type: Application
    Filed: May 18, 2015
    Publication date: November 26, 2015
    Inventors: Sinue Gomez, Robert Michael Morena, Douglas Miles Noni, JR., James Joseph Price, Sara Jean Sick
  • Publication number: 20150314571
    Abstract: A glass laminate structure comprising an external glass sheet and an internal glass sheet wherein one or both of the glass sheets comprises SiO2+B2O3+Al2O3?86.5 mol. %. and R2O—RO—Al2O3< about 5 mol. %. Exemplary glass sheet can comprise between about 69-80 mol. % SiO2, between about 6-12 mol. % Al2O3, between about 2-10 mol. % B2O3, between about 0-5 mol. % ZrO2, Li2O, MgO, ZnO and P2O5, between about 6-15 mol. % Na2O, between about 0-3 mol. % K2O and CaO, and between about 0-2 mol. % SnO2 to provide a mechanically robust and environmentally durable structure.
    Type: Application
    Filed: April 29, 2015
    Publication date: November 5, 2015
    Inventors: Jeffrey Scott Cites, Thomas Michael Cleary, James Gregory Couillard, Sinue Gomez, Michael John Moore, Robert Michael Morena, James Joseph Price, Charles Mitchel Sorensen, JR., Jonathan Earl Walter
  • Patent number: 9145329
    Abstract: Alkaline earth alumino-silicate glass compositions with improved chemical and mechanical durability and pharmaceutical packages comprising the same are disclosed herein. In one embodiment a glass composition may include from about 65 mol. % to about 75 mol. % SiO2; from about 6 mol. % to about 12.5 mol. % Al2O3; and from about 5 mol. % to about 12 mol. % alkali oxide. The alkali oxide may include Na2O and K2O. The K2O may be present in an amount less than or equal to 0.5 mol. %. The glass composition may also include from about 8.0 mol. % to about 15 mol. % of at least one alkaline earth oxide. The glass composition is susceptible to strengthening by ion-exchange thereby facilitating chemically strengthening the glass to improve the mechanical durability.
    Type: Grant
    Filed: October 25, 2012
    Date of Patent: September 29, 2015
    Assignee: Corning Incorporated
    Inventors: Melinda Ann Drake, Robert Michael Morena
  • Patent number: 9139469
    Abstract: According to one embodiment, a glass article may include SiO2, Al2O3, Li2O and Na2O. The glass article may have a softening point less than or equal to about 810° C. The glass article may also have a high temperature CTE less than or equal to about 27×10?6/° C. The glass article may also be ion exchangeable such that the glass has a compressive stress greater than or equal to about 600 MPa and a depth of layer greater than or equal to about 25 ?m after ion exchange in a salt bath comprising KNO3 at a temperature in a range from about 390° C. to about 450° C. for less than or equal to approximately 15 hours.
    Type: Grant
    Filed: July 10, 2013
    Date of Patent: September 22, 2015
    Assignee: Corning Incorporated
    Inventors: Marie Jacqueline Monique Comte, Melinda Ann Drake, Karen Leslie Geisinger, Sinue Gomez, Robert Michael Morena, Charlene Marie Smith, Randall Eugene Youngman
  • Publication number: 20150239772
    Abstract: Embodiments of the present disclosure pertain to crystallizable glasses and glass-ceramics that exhibit a black color and are opaque. In one or more embodiments, the crystallizable glasses and glass-ceramics include a precursor glass composition that exhibits a liquidus viscosity of greater than about 20 kPa*s. The glass-ceramics exhibit less than about 20 wt % of one or more crystalline phases, which can include a plurality of crystallites in the Fe2O3—TiO2—MgO system and an area fraction of less than about 15%. Exemplary compositions used in the crystallizable glasses and glass-ceramics include, in mol %, SiO2 in the range from about 50 to about 76, Al2O3 in the range from about 4 to about 25, P2O5+B2O3 in the range from about 0 to about 14, R2O in the range from about 2 to about 20, one or more nucleating agents in the range from about 0 to about 5, and RO in the range from about 0 to about 20.
    Type: Application
    Filed: February 17, 2015
    Publication date: August 27, 2015
    Inventors: David Eugene Baker, Matthew John Dejneka, Indrajit Dutta, Robert Michael Morena, Charlene Marie Smith
  • Publication number: 20150232343
    Abstract: A catalyst-free CVD method for forming graphene. The method involves placing a substrate within a reaction chamber, heating the substrate to a temperature between 600° C. and 1100° C., and introducing a carbon precursor into the chamber to form a graphene layer on a surface of the substrate. The method does not use plasma or a metal catalyst to form the graphene.
    Type: Application
    Filed: February 18, 2014
    Publication date: August 20, 2015
    Applicant: CORNING INCORPORATED
    Inventors: Xinyuan Liu, Robert George Manley, Robert Michael Morena, Zhen Song
  • Publication number: 20150232374
    Abstract: The embodiments described herein relate to chemically and mechanically durable glass compositions and pharmaceutical packaging formed from the same. According to one embodiment, a glass for pharmaceutical packaging includes from about 70 mol. % to about 80 mol. % SiO2; from about 4 mol. % to about 8 mol. % alkaline earth oxide, the alkaline earth oxide comprising MgO and CaO; X mol. % Al2O3, wherein X is from about 4 to about 8; and Y mol. % alkali oxide comprising non-zero amounts of Na2O and K2O, wherein Y is about 9-15 mol. % and a ratio of Y:X is greater than 1.
    Type: Application
    Filed: April 30, 2015
    Publication date: August 20, 2015
    Applicant: CORNING INCORPORATED
    Inventors: Paul Stephen Danielson, Steven Edward DeMartino, Melinda Ann Drake, Robert Michael Morena, Santona Pal, Robert Anthony Schaut
  • Publication number: 20150219860
    Abstract: A method of securing an optical fiber to a ferrule involves heating the ferrule to cause thermal expansion. A ferrule bore of the ferrule increases in diameter as a result of the thermal expansion, and an optical fiber is inserted into the ferrule bore. The ferrule is then cooled so that the ferrule bore decreases in diameter and forms a mechanical interface with the optical fiber. Finally, the optical fiber is fused to the ferrule by irradiating the optical fiber and the ferrule with laser energy.
    Type: Application
    Filed: April 14, 2015
    Publication date: August 6, 2015
    Inventors: Jeffrey Dean Danley, Robert Bruce Elkins, II, Thomas Dale Ketcham, Darrin Max Miller, Robert Michael Morena
  • Publication number: 20150203396
    Abstract: A silicate glass that is tough and scratch resistant. The toughness is increased by minimizing the number of non-bridging oxygen atoms in the glass. In one embodiment, the silicate glass is an aluminoborosilicate glass in which ?15 mol %?(R2O+R?O?Al2O3?ZrO2)?B2O3?4 mol %, where R is one of Li, Na, K, Rb, and Cs, and R? is one of Mg, Ca, Sr, and Ba.
    Type: Application
    Filed: February 12, 2015
    Publication date: July 23, 2015
    Inventors: Matthew John Dejneka, Adam James Ellison, Sinue Gomez, Robert Michael Morena
  • Publication number: 20150079318
    Abstract: The embodiments described herein relate to chemically and mechanically durable glass compositions and glass articles formed from the same. In another embodiment, a glass composition may include from about 70 mol. % to about 80 mol. % SiO2; from about 3 mol. % to about 13 mol. % alkaline earth oxide; X mol. % Al2O3; and Y mol. % alkali oxide. The alkali oxide may include Na2O in an amount greater than about 8 mol. %. A ratio of Y:X may be greater than 1 and the glass composition may be free of boron and compounds of boron. In some embodiments, the glass composition may also be free of phosphorous and compounds of phosphorous. Glass articles formed from the glass composition may have at least a class S3 acid resistance according to DIN 12116, at least a class A2 base resistance according to ISO 695, and a type HGA1 hydrolytic resistance according to ISO 720.
    Type: Application
    Filed: November 24, 2014
    Publication date: March 19, 2015
    Applicant: Corning Incorporated
    Inventors: Paul Stephen Danielson, Steven Edward DeMartino, Melinda Ann Drake, Robert Michael Morena, Santona Pal, Robert Anthony Schaut
  • Patent number: 8980777
    Abstract: The embodiments described herein relate to chemically and mechanically durable glass compositions and glass articles formed from the same. In another embodiment, a glass composition may include from about 70 mol. % to about 80 mol. % SiO2; from about 3 mol. % to about 13 mol. % alkaline earth oxide; X mol. % Al2O3; and Y mol. % alkali oxide. The alkali oxide may include Na2O in an amount greater than about 8 mol. %. A ratio of Y:X may be greater than 1 and the glass composition may be free of boron and compounds of boron. In some embodiments, the glass composition may also be free of phosphorous and compounds of phosphorous. Glass articles formed from the glass composition may have at least a class S3 acid resistance according to DIN 12116, at least a class A2 base resistance according to ISO 695, and a type HGA1 hydrolytic resistance according to ISO 720.
    Type: Grant
    Filed: October 25, 2012
    Date of Patent: March 17, 2015
    Assignee: Corning Incorporated
    Inventors: Paul Stephen Danielson, Steven Edward DeMartino, Melinda Ann Drake, Robert Michael Morena, Santona Pal, Robert Anthony Schaut
  • Publication number: 20150064478
    Abstract: An antimony-free glass suitable for use in a frit for producing a hermetically sealed glass package is described. The hermetically sealed glass package, such as an OLED display device, is manufactured by providing a first glass substrate plate and a second glass substrate plate and depositing the antimony-free frit onto the first substrate plate. OLEDs may be deposited on the second glass substrate plate. An irradiation source (e.g., laser, infrared light) is then used to heat the frit which melts and forms a hermetic seal that connects the first glass substrate plate to the second glass substrate plate and also protects the OLEDs. The antimony-free glass has excellent aqueous durability, good flow, low glass transition temperature and low coefficient of thermal expansion.
    Type: Application
    Filed: August 13, 2014
    Publication date: March 5, 2015
    Inventors: Melinda Ann Drake, Robert Michael Morena
  • Patent number: 8969226
    Abstract: A silicate glass that is tough and scratch resistant. The toughness is increased by minimizing the number of non-bridging oxygen atoms in the glass. In one embodiment, the silicate glass is an aluminoborosilicate glass in which ?15 mol %?(R2O+R?O—Al2O3—ZrO2)—B2O3?4 mol %, where R is one of Li, Na, K, Rb, and Cs, and R? is one of Mg, Ca, Sr, and Ba.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: March 3, 2015
    Assignee: Corning Incorporated
    Inventors: Matthew John Dejneka, Adam James Ellison, Sinue Gomez, Robert Michael Morena
  • Publication number: 20150037571
    Abstract: The embodiments described herein relate to chemically and mechanically durable glass compositions and glass articles formed from the same. In another embodiment, a glass composition may include from about 70 mol. % to about 80 mol. % SiO2; from about 3 mol. % to about 13 mol. % alkaline earth oxide; X mol. % Al2O3; and Y mol. % alkali oxide. The alkali oxide may include Na2O in an amount greater than about 8 mol. %. A ratio of Y:X may be greater than 1 and the glass composition may be free of boron and compounds of boron. In some embodiments, the glass composition may also be free of phosphorous and compounds of phosphorous. Glass articles formed from the glass composition may have at least a class S3 acid resistance according to DIN 12116, at least a class A2 base resistance according to ISO 695, and a type HGA1 hydrolytic resistance according to ISO 720.
    Type: Application
    Filed: October 22, 2014
    Publication date: February 5, 2015
    Applicant: CORNING INCORPORATED
    Inventors: Paul Stephen Danielson, Steven Edward DeMartino, Melinda Ann Drake, Robert Michael Morena, Santona Pal, Robert Anthony Schaut