Patents by Inventor Robert Millner

Robert Millner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8968441
    Abstract: A method and a plant for the production of pig iron or liquid steel semi-finished products are shown, metal oxide-containing batch materials and, if appropriate, aggregates being at least partially reduced in a reduction zone by a reduction gas, subsequently being introduced into a smelting zone and being smelted along with the supply of carbon carriers and oxygen-containing gas and along with the formation of the reduction gas. The reduction gas formed in the smelting zone is supplied to the reduction zone, reacted there and drawn off as export gas, CO2 is separated from the export gas, and a product gas is formed which is utilized for the introduction of pulverulent carbon carriers into the smelting zone.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: March 3, 2015
    Assignee: Siemens Vai Metals Technologies GmbH
    Inventor: Robert Millner
  • Patent number: 8945273
    Abstract: A process and an apparatus for reducing charge materials containing iron ore or for producing pig iron or liquid primary steel products in a smelting unit are provided, the charge materials being at least partially reduced in at least one reduction unit by means of a reducing gas and optionally at least some of the at least partially reduced charge materials being melted in a smelting unit while supplying coal or coke and gas containing oxygen, while simultaneously forming the reducing gas, and the reducing gas or a reducing gas generated externally being supplied to the reduction unit. In the event of an interruption in the production of pig iron or primary steel products, the at least one reduction unit is emptied and the at least partially reduced charge materials are introduced into at least one vessel and kept under a non-oxidizing shielding gas atmosphere.
    Type: Grant
    Filed: December 1, 2010
    Date of Patent: February 3, 2015
    Assignee: Siemens Vai Metals Technologies GmbH
    Inventors: Thomas Eder, Robert Millner, Jan-Friedemann Plaul, Norbert Rein, Karl Zehetbauer
  • Publication number: 20150027038
    Abstract: Process for producing a briquette containing carbon carriers (2): mixing the carbon carriers (2) together with a binder system (3) with introduction of steam and the mixture obtained is pressed to form briquettes. At least one of drying carbon carriers (2), setting the temperature of the carbon carriers (2) to be mixed with the binder system before mixing or heat treating the briquettes after pressing by direct or indirect interaction with superheated steam. Waste steam is at least part of the steam introduced during mixing. An apparatus for carrying out such a process has such interaction with steam, from which a waste steam conduit leads and opens directly or indirectly into the mixing device.
    Type: Application
    Filed: March 28, 2013
    Publication date: January 29, 2015
    Applicant: SIEMENS VAI METALS TECHNOLOGIES GMBH
    Inventors: Hado Heckmann, Robert Millner, Johann Wurm
  • Publication number: 20150007697
    Abstract: A method for reducing iron-oxide-containing feedstocks by introducing a reducing gas into a high-pressure reducing unit (1) where the reducing gas is consumed by reducing iron-oxide-containing feedstocks and then the reducing gas is withdrawn as top gas from the high-pressure reducing unit (1). At least one subportion of the top gas is admixed to a feed gas as recycle gas (15). The reducing gas is generated by CO2 being separated off from the gas mixture obtained from the addition of the recycle gas (15) to the feed gas after one or more compression steps. The recycle gas (15) is added to the feed gas in at least two recycle gas substreams that are separated from one another with recycle gas substream pressures at various distances from the high-pressure reducing unit (1).
    Type: Application
    Filed: January 11, 2013
    Publication date: January 8, 2015
    Inventors: Robert Millner, Gerald Rosenfellner
  • Publication number: 20150004081
    Abstract: A method and a device for reducing iron-oxide-containing feedstocks, in which a reducing gas is fed to a reducing unit (1) containing the iron-oxide-containing feedstocks. The reducing gas is generated by introducing a process gas having reduction potential into a heating appliance (3) for heating the process gas, which is withdrawn as reducing gas therefrom. In the heating appliance (3), heat energy is transferred to the process gas. The heat energy is formed by combustion of a fuel gas containing organic substances, including coke oven gas with addition of technically pure oxygen. The flames of the combustion have an adiabatic flame temperature of above 1000° C., wherein, in the combustion of the fuel gas, at least some of the organic substances present in the fuel gas are cracked.
    Type: Application
    Filed: January 17, 2013
    Publication date: January 1, 2015
    Inventors: Robert Millner, Gerald Rosenfellner
  • Patent number: 8911700
    Abstract: A process and an installation for reducing particulate material containing iron oxide are shown, wherein the material containing iron oxide is at least partially reduced with reducing gas in a reducing zone and the waste gas produced during the reduction is drawn off and subsequently subjected to CO2 cleaning in a CO2 separating device (1), in which a tail gas containing CO2 is separated. The tail gas is subjected to combustion and subsequent dewatering in a dewatering device (5), the substitute gas thereby formed being used as a substitute for inert gas.
    Type: Grant
    Filed: February 3, 2010
    Date of Patent: December 16, 2014
    Assignee: Siemens Vai Metals Technologies GmbH
    Inventors: Robert Millner, Jan-Friedemann Plaul, Kurt Wieder
  • Publication number: 20140361472
    Abstract: In a method and a device for operating a smelting reduction process, at least part of an export gas from a blast furnace or a reduction unit is thermally utilized in a gas turbine and the exhaust gas of this gas turbine is used in a waste heat steam generator to generate steam. The remaining part of the export gas is fed to a CO2 separation apparatus, the tail gas thereby obtained being fed to a waste heat steam generator and burned for additional steam generation. The combustible components of the tail gas are sent for thermal utilization in a steam generator, so that the overall energy balance of the thermal use of the export gas is improved. In addition, a further part of the export gas is qualitatively improved by the CO2 separation apparatus, so as to generate a high-quality reduction gas which can be supplied for metallurgical use.
    Type: Application
    Filed: August 21, 2014
    Publication date: December 11, 2014
    Inventors: Robert MILLNER, Johannes Leopold SCHENK, Kurt WIEDER
  • Patent number: 8882893
    Abstract: A method is provided for cleaning a gas flow made of top gas and/or off gas and/or export gas from a direct reduction plant or a melt reduction plant, which is loaded with dust and/or fine particulate solids. The gas flow is subjected to a dry cleaning using at least one dry filter, wherein dusts and/or fine particulate raw materials are separated from the gas flow. The cleaned gas flow is fed into a CO2 separating device, wherein CO2 is separated, forming a product gas that is substantially free of water and CO2 and is used for backflushing the dry filter.
    Type: Grant
    Filed: July 7, 2011
    Date of Patent: November 11, 2014
    Assignee: Siemens Vai Metals Technologies GmbH
    Inventor: Robert Millner
  • Patent number: 8834599
    Abstract: In a method and a device for operating a smelting reduction process, at least part of an export gas from a blast furnace or a reduction unit is thermally utilized in a gas turbine and the exhaust gas of this gas turbine is used in a waste heat steam generator to generate steam. The remaining part of the export gas is fed to a CO2 separation apparatus, the tail gas thereby obtained being fed to a waste heat steam generator and burned for additional steam generation. The combustible components of the tail gas are sent for thermal utilization in a steam generator, so that the overall energy balance of the thermal use of the export gas is improved. In addition, a further part of the export gas is qualitatively improved by the CO2 separation apparatus, so as to generate a high-quality reduction gas which can be supplied for metallurgical use.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: September 16, 2014
    Assignee: Siemens Vai Metals Technologies GmbH
    Inventors: Robert Millner, Johannes Leopold Schenk, Kurt Wieder
  • Patent number: 8821760
    Abstract: A method and an apparatus for generating a gas containing hydrogen (H2) and carbon monoxide (CO), as a raw material for chemical utilization in, for example, synthesis processes based on export gas from a metallurgical process, are shown. Part of the export gas is subjected to CO conversion with the addition of water vapor, crude synthesis gas with a defined quantity ratio of H2 to CO being formed. Even the water vapor required for CO conversion can be at least partially generated in at least one steam generator in the method.
    Type: Grant
    Filed: November 3, 2009
    Date of Patent: September 2, 2014
    Assignee: Siemens VAI Metals Technologies GmbH
    Inventor: Robert Millner
  • Patent number: 8808422
    Abstract: A method and device are disclosed for automatically evaluating a delivery system in respect of the energy efficiency and emissions efficiency thereof. The method may include: determining a service level for the delivery system according to an energy intensity and an evaluation relevance of the particular delivery system, detecting energy data and emissions data of the delivery system corresponding to the determined service level of the delivery system, and calculating at least one indicator based on the detected energy data and emissions data and/or based on data for the energy management and environmental management of the delivery system for evaluating the delivery system with respect to the energy efficiency and emissions efficiency thereof.
    Type: Grant
    Filed: July 27, 2011
    Date of Patent: August 19, 2014
    Assignee: Siemens Vai Metals Technologies GmbH
    Inventors: Leopold Werner Kepplinger, Robert Millner, Jan-Friedemann Plaul, Johannes Leopold Schenk, Kurt Wieder, Johann Wurm
  • Publication number: 20140224068
    Abstract: A method for reducing material containing iron oxide in a solid bed in a reduction shaft and converting the material to pre-reduced material in the reduction shaft by introducing pre-reduction gas into the solid bed at a pressure p1. Pre-reduced material is introduced from the reduction shaft into a melter gasifier and there finally reduced by reduction gas under a pressure p2. A top gas at pressure p3 is diverted from above the solid bed out of the reduction shaft. A dust exhaust gas having a pressure p4 is diverted from the solid bed out of the reduction shaft. The relationships p1>p4 and p1>p3, and preferably also p4>p3, apply. A device carries out such a method.
    Type: Application
    Filed: September 10, 2012
    Publication date: August 14, 2014
    Applicant: SIEMENS VAI METALS TECHNOLOGIES
    Inventors: Hado Heckmann, Robert Millner, Gerald Rosenfellner
  • Publication number: 20140217653
    Abstract: A system for energy optimization in a plant (3) for producing direct-reduced metal ores (3). The plant (3) has at least one reduction unit (12), a device for separating gas mixtures (7, 7a, 7b) having an associated compressing device (4, 4a, 4b), and a gas-heating device (10) upstream of the reduction unit (12). Part of the process gases (2, 2a, 2b) is fed by a feed line from a smelting reduction plant to the plant for producing direct-reduced metal ores (3). A turbine (8, 8a, 8b) is fit between the device for separating gas mixtures (7, 7a, 7b) and the gas-heating device (10) upstream of the reduction unit (12) such that a pressure drop between the device for separating gas mixtures (7, 7a, 7b) and the reduction unit (12) is converted into forms of energy that can be used to operate additional components (4, 4a, 4b, 15, 15a, 15b) of the plant (3), in particular electrical energy and/or mechanical energy. Energy consumption of the plant (3) is reduced.
    Type: Application
    Filed: August 28, 2012
    Publication date: August 7, 2014
    Applicant: SIEMENS VAI METALS TECHNOLOGIES GMBH
    Inventors: Robert Millner, Gerald Rosenfellner, Harald Sprenger
  • Publication number: 20140202285
    Abstract: A method and a system for treating waste gases (4) from plants (32, 33) for pig iron production, wherein a first sub-stream (51) of the waste gas is subjected to an at least partial conversion of CO into CO2 after the addition of water and/or water vapor (10) and the waste gas (4) is then subjected to CO2 capture. To be able to set a variable H2/CO ratio in the waste gas, a further sub-stream (52) of the waste gas is not subjected to a conversion of CO into CO2, but is subjected to CO2 capture separately from the first sub-stream (51).
    Type: Application
    Filed: August 22, 2012
    Publication date: July 24, 2014
    Applicant: Siemens VAI Metals Technologies GmbH
    Inventors: Robert Millner, Gerald Rosenfellner
  • Publication number: 20140196571
    Abstract: A process and a device for charging a primary product for pig iron into a smelting unit are provided. According to the process and device, some of the primary product that has been formed by reducing oxidic iron carriers is stored in the hot state in a reservoir tank before being supplied into the storage device or charging device that is directly connected to the smelting unit.
    Type: Application
    Filed: March 6, 2014
    Publication date: July 17, 2014
    Applicant: SIEMENS VAI METALS TECHNOLOGIES GMBH
    Inventors: Thomas EDER, Robert MILLNER, Jan FRIEDEMANN PLAUL, Norbert REIN, Andreas SCHERNEY, Karl ZEHETBAUER
  • Publication number: 20140138884
    Abstract: A device for closed-loop control of process gases (11) in a plant (8) for producing directly reduced metal ores includes at least one reduction unit (10), an appliance upstream of the reduction unit (10) for separating gas mixtures (18), a gas purification appliance (13) connected downstream of the reduction unit (10) for rate control of process gases (11). Process gases (11) are obtained by recycling from the production process itself and from a plant for pig iron generation (1) via a supply conduit (16). An open-loop pressure control appliance (15) upstream of a junction of the supply conduit (16) into a return conduit (14) for the process gases (11) such that a pressure level for the appliance for separating gas mixtures (18) is kept constant and the process gases (9,11) are controlled in a closed-loop manner in a plant for producing directly reduced metal ores (8).
    Type: Application
    Filed: June 1, 2012
    Publication date: May 22, 2014
    Inventors: Robert Millner, Jan-Friedemann Plaul, Norbert Rein, Gerald Rosenfellner
  • Patent number: 8728384
    Abstract: A process and a device for charging a primary product for pig iron into a smelting unit are provided. According to the process and device, some of the primary product that has been formed by reducing oxidic iron carriers is stored in the hot state in a reservoir tank before being supplied into the storage device or charging device that is directly connected to the smelting unit.
    Type: Grant
    Filed: October 6, 2010
    Date of Patent: May 20, 2014
    Assignee: Siemens Vai Metals Technologies GmbH
    Inventors: Thomas Eder, Robert Millner, Jan-Freidemann Plaul, Norbert Rein, Andreas Scherney, Karl Zehetbauer
  • Publication number: 20140110891
    Abstract: A melter gasifier of a smelting reduction installation is charged by bringing together coal-containing material in lump form and iron carrier material (which may be hot) before and/or while they enter the melter gasifier. The ratio of the combined amounts of iron carrier material and coal-containing material in lump form is variable. The combined amounts of iron carrier material and coal-containing material in lump form are distributed over the cross section of the melter gasifier by a dynamic distributing device, and the ratio of the combined amounts of the iron carrier material and coal-containing material in lump form is set depending on the position of the dynamic distributing device.
    Type: Application
    Filed: May 9, 2012
    Publication date: April 24, 2014
    Applicant: SIEMENS VAI METALS TECHNOLOGIES GmbH
    Inventors: Georg Aichinger, Franz Berner, Thomas Eder, Robert Millner, Jan-Friedemann Plaul, Norbert Rein, Andreas Scherney, Kurt Wieder, Johann Wurm
  • Publication number: 20140083252
    Abstract: A gas stream containing both hydrocarbon and hydrogen is separated into a hydrogen-rich fraction and a hydrocarbon-rich fraction. Then at least one sub-quantity of the hydrocarbon-rich fraction is subjected to at least one operation from the group oxidation using technically pure oxygen and reforming using CO2 and H2O. The result is introduced at least as a component of a reduction gas into a reduction unit containing the metal oxides. As a result of the at least one operation, the hydrocarbon content in the reduction gas on entry into the reduction unit is below 12% by volume.
    Type: Application
    Filed: May 7, 2012
    Publication date: March 27, 2014
    Applicant: SIEMENS VAI METALS TECHNOLOGIES GMBH
    Inventors: Christian Boehm, Robert Millner
  • Publication number: 20140007504
    Abstract: In a plant having integrated CO2 removal, for pig iron production or synthesizing gas, at least part of the offgas or synthesis gas is discharged as export gas from the plant, optionally collected in an export gas container and subsequently thermally utilized in a gas turbine. The offgas from the gas turbine is fed to a waste heat boiler for generation of steam. To reduce the addition of high-grade fuel gases, at least part of the tailgas from the CO2 removal plant is mixed into the export gas upstream of the gas turbine as a function of the joule value of the export gas after addition of the tailgas. The proportion of tailgas is increased when the joule value of the export gas goes above a predefined maximum joule value and the proportion of tailgas is reduced when the joule value of the export gas drops below a predefined minimum joule value.
    Type: Application
    Filed: August 3, 2012
    Publication date: January 9, 2014
    Applicant: SIEMENS VAI METALS TECHOLOGIES GMBH
    Inventors: Robert Millner, Jan-Friedemann Plaul