Patents by Inventor Robert Millner

Robert Millner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110283837
    Abstract: In a method and a device for operating a smelting reduction process, at least part of an export gas from a blast furnace or a reduction unit is thermally utilized in a gas turbine and the exhaust gas of this gas turbine is used in a waste heat steam generator to generate steam. The remaining part of the export gas is fed to a CO2 separation apparatus, the tail gas thereby obtained being fed to a waste heat steam generator and burned for additional steam generation. The combustible components of the tail gas are sent for thermal utilization in a steam generator, so that the overall energy balance of the thermal use of the export gas is improved. In addition, a further part of the export gas is qualitatively improved by the CO2 separation apparatus, so as to generate a high-quality reduction gas which can be supplied for metallurgical use.
    Type: Application
    Filed: September 29, 2009
    Publication date: November 24, 2011
    Inventors: Robert Millner, Johannes Leopold Schenk, Kurt Wieder
  • Publication number: 20110229276
    Abstract: A method and a device for separating particulate solids from a gas flow, particularly a carrier gas flow for transporting the particulate solids, has a transport line (2) that leads into a separating chamber (5), a connected dry filter (9) for separating dusts and/or fine particulate solids, a discharge line (12) for conducting away the cleaned gas flow, and a storage container (1) for holding the separated particulate solids. The dry filter is equipped with backwash units for cleaning the dry filter.
    Type: Application
    Filed: September 29, 2009
    Publication date: September 22, 2011
    Inventors: Thomas Eder, Robert Millner, Norbert Rein, Johannes Leopold Schenk
  • Publication number: 20110120266
    Abstract: A process for energy-and emission-optimized iron production and an installation for carrying out the process. A first partial amount of a generator gas produced in a melter gasifier is used as a first reducing gas in a first reduction zone. A second partial amount is fed to at least one further reduction zone as a second reducing gas. In addition, after CO2 scrubbing, a partial amount of top gas removed from the first reduction zone is admixed with the generator gas after the latter leaves the melter gasifier, for cooling the generator gas.
    Type: Application
    Filed: June 24, 2009
    Publication date: May 26, 2011
    Inventors: Thomas Bürgler, Stephan Lackner, Robert Millner, Reinhard Redl, Bernhard Rummer, Herbert Schmid, Johann Wurm, Andreas Zobernig
  • Publication number: 20110030507
    Abstract: A process and an apparatus for producing liquid pig iron or liquid primary steel products from charge materials formed by iron ores and additions. The charge materials are subjected to a further reduction in a reducing zone (1) and are then fed to a smelting zone or a smelting unit (2), in particular a fusion gasifier, for smelting with the addition of carbon carriers and oxygen-containing gas to form a fixed bed. A CO- and H2-containing reduction gas is formed, which gas is introduced into the reducing zone converted there and drawn off as top gas. The hot top gas, laden with solid matter, after separation of the solids, is subjected at least to a dry coarse separation and at least parts of the hot solids segregated by the separation are returned into the smelting zone or the smelting unit (2) or the reducing unit (1). In addition, the top gas is treated in a further fine separation stage (13A).
    Type: Application
    Filed: January 30, 2009
    Publication date: February 10, 2011
    Inventors: Georg Aichinger, Thomas Eder, Hado Heckmann, Robert Millner, Johannes Leopold Schenk, Martin Schmidt, Kurt Wieder, Johann Wurm
  • Publication number: 20100313711
    Abstract: A method for the melting of pig iron in a blast furnace (1) operated with oxygen or in a melt-reduction plant, with a reduction region. Purified crude gas is discharged from the reduction region and is recirculated into the reduction region with the addition of hydrocarbons. The purified crude gas is mixed with hydrocarbons and is also blended with a reduction gas which has a temperature of above 1000° C. and which is generated by partial oxidation of hydrocarbons by means of oxygen gas having an oxygen content of above 90% by volume, in order to form a recirculation gas with a temperature of above 800° C. The recirculation gas is recirculated into the reduction region according to an auto-reforming process.
    Type: Application
    Filed: January 29, 2009
    Publication date: December 16, 2010
    Inventors: Robert Millner, Kurt Wieder, Johann Wurm
  • Publication number: 20100043599
    Abstract: In a method for the production of molten metal, oxygen, a reducing agent and iron reduced in a reduction reactor are introduced into a melt gasifier, the reducing agent is gasified with oxygen and reduced iron is melted by means of the heat which occurs, the cupola gas being used as at least a fraction of the reduction gas. Reacted top gas is drawn off from the reduction reactor. For increased efficiency in terms of energy and raw materials, there is in this case provision for at least part of the heat energy of the top gas and/or of the fraction of the reduction gas which is provided for use as cooling gas and as excess gas to be utilized for the indirect heating of at least one further gas used in the method. For this purpose, at least one heat exchanger in a line for top gas and/or the fraction of the reduction gas which is provided for use as cooling gas and as excess gas is provided, at least one further gas used in the method flowing through said heat exchanger.
    Type: Application
    Filed: October 1, 2007
    Publication date: February 25, 2010
    Inventors: Franz Hauzenberger, Robert Millner, Norbert Rein, Johannes Leopold Schenk, Martin Schmidt, Bogdan Vuletic, Kurt Wieder, Johann Wurm
  • Publication number: 20100024599
    Abstract: A method for producing molten material, wherein oxygen, reducing agents and iron that has been reduced in a reduction reactor are introduced into a melter gasifier. The reducing agent is gasified with the oxygen and the heat thereby produced melts the reduced iron. Cupola gas from the melter gasifier is used at least as a portion of the reduction gas, and reacted top gas is withdrawn from the reduction reactor. The aim of the invention is to increase energy efficiency and raw material efficiency as well as productivity while at the same time obtaining metallurgically improved properties of the product. For this purpose, at least a portion of the top gas is branched off from the line for the withdrawal of the top gas from the reduction reactor and is returned via at least one return line leading to the melter gasifier and is introduced into the melter gasifier.
    Type: Application
    Filed: October 1, 2007
    Publication date: February 4, 2010
    Inventors: Franz Hauzenberger, Robert Millner, Norbert Rein, Johannes Leopold Schenk, Martin Schmidt, Bogdan Vuletic, Kurt Wieder, Johann Wurm
  • Publication number: 20090308074
    Abstract: An apparatus for generating energy using sensible heat of an offgas during manufacture of molten iron and a method for generating energy using the same are provided. The method for generating energy includes i) providing an offgas discharged from an apparatus for manufacturing molten iron including a reduction reactor that provides reduced iron that is reduced from iron ore and a melter-gasifier that melts the reduced iron to manufacture molten iron; ii) converting cooling water into high pressure steam by contacting the cooling water with the offgas; and iii) generating energy from at least one steam turbine by supplying the high pressure steam to the steam turbine and rotating the steam turbine.
    Type: Application
    Filed: December 17, 2007
    Publication date: December 17, 2009
    Inventors: Myoung-Kyun Shin, Sang-Hyun Kim, Min-Chul Park, Sang-Hoon Joo, Robert Millner