Patents by Inventor Robert Moffatt

Robert Moffatt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100264745
    Abstract: Described herein are embodiments of a receiving assembly for a mobile device for receiving power wirelessly from at least one high-Q resonator that includes a receiving high-Q resonator part, tuned to magnetic resonance at a specified frequency, said receiving resonator part including a conductive loop extending around space and material not exceeding the size of the mobile device, and said receiving resonator part including a capacitive structure coupled to said conductive loop; and at least one mobile electronic item, powered by power that is wirelessly received by said receiving high-Q resonator part.
    Type: Application
    Filed: March 18, 2010
    Publication date: October 21, 2010
    Inventors: Aristeidis Karalis, Andre B. Kurs, Robert Moffatt, John D. Joannopoulos, Peter H. Fisher, Marin Soljacic
  • Publication number: 20100253152
    Abstract: Described herein are embodiments of a wireless power transmitter system for transmitting power to at least one high-Q resonator that includes a connection to a source of line power, a modulating part, which converts said line power to create a first frequency of lower than 1 MHz, and a transmitter part, including a transmitting high-Q resonator formed of a conductive loop with a capacitor that brings said high-Q resonator to resonance at said first frequency, and which produces a magnetic field based on said source of line power, said transmitter part having a Q factor at said frequency, where said Q factor is at least 300.
    Type: Application
    Filed: March 4, 2010
    Publication date: October 7, 2010
    Inventors: Aristeidis Karalis, Andre B. Kurs, Robert Moffatt, John D. Joannopoulos, Peter H. Fisher, Marin Soljacic
  • Publication number: 20100237707
    Abstract: Described herein are embodiments of a transmitter system for transmitting wireless electrical power, that includes a source which creates an output electrical signal having a specified frequency, a coupling part, directly connected to said source, said coupling part formed of a first loop of wire which is matched for optimal power transfer to said source, and a high-Q magnetic resonator part, spaced from said coupling part such that it is not directly connected to said coupling part, but magnetically coupled to a magnetic field created by said coupling part, receiving power wirelessly from said coupling part, and said high-Q magnetic resonator part creating a magnetic field based on said power that is wirelessly received, said high-Q magnetic resonator formed of an wire coil having an inductance L, and a capacitance C, and said resonator part having an LC value which is substantially resonant with said specified frequency.
    Type: Application
    Filed: February 26, 2010
    Publication date: September 23, 2010
    Inventors: Aristeidis Karalis, Andre B. Kurs, Robert Moffatt, John D. Joannopoulos, Peter H. Fisher, Marin Soljacic
  • Publication number: 20100237708
    Abstract: In embodiments of the present invention improved capabilities are described for receiving magnetic transmission of power from at least a first high-Q resonator, comprising a wire loop high-Q resonator, having a wire formed into at least one loop forming an inductance and having a capacitance, the wire loop resonator having an LC value tuned for receiving a magnetic field of a first specified frequency, and producing an output based on receiving the magnetic field that includes electrical power. The wire loop resonator may include a first part associated with the wire loop resonator which increases the coupling between the first high-Q resonator and the wire loop portion of said resonator without increasing the radius of the wire loop resonator.
    Type: Application
    Filed: March 26, 2010
    Publication date: September 23, 2010
    Inventors: Aristeidis Karalis, Andre B. Kurs, Robert Moffatt, John D. Joannopoulos, Peter H. Fisher, Marin Soljacic
  • Publication number: 20100237706
    Abstract: Described herein are embodiments of a wireless power transmission system which includes a wireless source high-Q resonator and power supply, said power supply generating signals at a first frequency, and said high-Q resonator having an inductor formed by a wire, a capacitive part, and said inductive part and capacitive part being resonant with said first frequency, and said resonator having at least one component that renders it resistant to anything other than large metallic structures in its vicinity.
    Type: Application
    Filed: February 19, 2010
    Publication date: September 23, 2010
    Inventors: Aristeidis Karalis, Andre B. Kurs, Robert Moffatt, John D. Joannopoulos, Peter H. Fisher, Marin Soljacic
  • Publication number: 20100231053
    Abstract: Described herein are embodiments of a system that includes a first system including a high-Q resonator of a first size, transmitting wireless power via a magnetic field; and a repeater high-Q resonator, of a second size, transmitting said wireless power in an area.
    Type: Application
    Filed: May 26, 2010
    Publication date: September 16, 2010
    Inventors: Aristeidis Karalis, Andre B. Kurs, Robert Moffatt, John D. Joannopoulos, Peter H. Fisher, Marin Soljacic
  • Publication number: 20100225175
    Abstract: Described herein are embodiments of forming a wireless power transfer system which include locating a source high-Q resonator on one side of a solid object, where the solid object may be an object from the group consisting of a solid non-conducting wall, or a solid non-conducting window, locating a receiving high-Q resonator on the other side of the solid object, aligning a first position of the source resonator with a second position of the receiving resonator, and using the source resonator to create a magnetic field, and using the receiving resonator to receive the magnetic field, and to produce an output that includes power based on said receiving the magnetic field.
    Type: Application
    Filed: May 21, 2010
    Publication date: September 9, 2010
    Inventors: Aristeidis Karalis, Andre B. Kurs, Robert Moffatt, John D. Joannopoulos, Peter H. Fisher, Marin Soljacic
  • Publication number: 20100201205
    Abstract: Described herein are embodiments of forming a wireless power transfer system which uses at least two high-Q magnetically resonant elements, and which have values which are set to acceptable levels of electric and magnetic field strength and radiated power.
    Type: Application
    Filed: April 23, 2010
    Publication date: August 12, 2010
    Inventors: Aristeidis Karalis, Andre B. Kurs, Robert Moffatt, John D. Joannopoulos, Peter H. Fisher, Marin Soljacic
  • Publication number: 20100181844
    Abstract: Described herein are embodiments of a wireless power system that include a signal generator, having a connection to a source of power, and which creates a substantially unmodulated signal at a first frequency, a transmitting high-Q resonator, generating a magnetic field having said first frequency and based on power created by said signal generator, a receiving high-Q resonator, receiving a magnetic power signal created by said transmitting resonator, said receiving resonator being a distance greater than 1 m spaced from said transmitting resonator, and a load receiving part, receiving power from said receiving resonator, wherein a transfer efficiency between said transmitting resonator and said receiving resonator is greater than 25% at 1 m of distance between said transmitting resonator and said receiving resonator.
    Type: Application
    Filed: March 18, 2010
    Publication date: July 22, 2010
    Inventors: Aristeidis Karalis, Andre B. Kurs, Robert Moffatt, John D. Joannopoulos, Peter H. Fisher, Marin Soljacic
  • Publication number: 20100171370
    Abstract: Described herein are embodiments of a wireless power transmitter device for transmitting power to at least one high-Q resonator that includes a first portion, formed of a high-Q magnetic resonator, and a high frequency generation system, having a number of components, wherein at least one of said components is formed using a process which creates nanoscale features.
    Type: Application
    Filed: March 18, 2010
    Publication date: July 8, 2010
    Inventors: Aristeidis Karalis, Andre B. Kurs, Robert Moffatt, John D. Joannopoulos, Peter H. Fisher, Marin Soljacic
  • Publication number: 20100117456
    Abstract: Described herein are embodiments of transmitting power wirelessly that include driving a high-Q non-radiative resonator at a value near its resonant frequency to produce a magnetic field output, said non-radiative-resonator formed of a combination of resonant parts, including at least an inductive part formed by a wire loop, and a capacitor part that is separate from a material forming the inductive part, and maintaining at least one characteristic of said resonator such that its usable range has a usable distance over which power can be received, which-distance is set by a detuning effect when a-second resonator gets too close to said resonator.
    Type: Application
    Filed: January 15, 2010
    Publication date: May 13, 2010
    Inventors: Aristeidis Karalis, Andre B. Kurs, Robert Moffatt, John D. Joannopoulos, Peter H. Fisher, Marin Soljacic
  • Publication number: 20090224856
    Abstract: Disclosed is an apparatus for use in wireless energy transfer, which includes a first resonator structure configured to transfer energy non-radiatively with a second resonator structure over a distance greater than a characteristic size of the second resonator structure. The non-radiative energy transfer is mediated by a coupling of a resonant field evanescent tail of the first resonator structure and a resonant field evanescent tail of the second resonator structure.
    Type: Application
    Filed: May 8, 2009
    Publication date: September 10, 2009
    Inventors: Aristeidis Karalis, Andre B. Kurs, Robert Moffatt, John D. Joannopoulos, Peter H. Fisher, Marin Soljacic
  • Publication number: 20080278264
    Abstract: Disclosed is an apparatus for use in wireless energy transfer, which includes a first resonator structure configured to transfer energy non-radiatively with a second resonator structure over a distance greater than a characteristic size of the second resonator structure. The non-radiative energy transfer is mediated by a coupling of a resonant field evanescent tail of the first resonator structure and a resonant field evanescent tail of the second resonator structure.
    Type: Application
    Filed: March 26, 2008
    Publication date: November 13, 2008
    Inventors: Aristeidis Karalis, Andre B. Kurs, Robert Moffatt, John D. Joannopoulos, Peter H. Fisher, Marin Soljacic
  • Patent number: 6535105
    Abstract: An electronic device and process of making the device is disclosed. The device includes a multi-sided body defined by a plurality of electrode plates arranged in a stack. A resin layer is applied to both conductive and semiconductive regions of the device, and metal is plated upon terminals to create a conductive element. The device may be a varistor, thermistor, resistor, or other microelectronic component having a multi-sided body and terminal structures that are capable of receiving a resin coating. The multi-sided body has a resin coating on at least a portion of an exterior surface, the resin coating substantially preventing plating of metal onto the exterior surface of the body. One suitable resin coating that may be employed is a thermoset resin comprising a B-staged divinylsiloxane-bis(benzocyclobutene)(i.e. “BCB”) resin dissolved in mesitylene solvent.
    Type: Grant
    Filed: March 16, 2001
    Date of Patent: March 18, 2003
    Assignee: AVX Corporation
    Inventors: Robert H. Heistand, II, John L. Galvagni, Jeffrey P. Mevissen, Robert Moffatt Kennedy, III
  • Publication number: 20010035810
    Abstract: An electronic device and process of making the device is disclosed. The device includes a multi-sided body defined by a plurality of electrode plates arranged in a stack. A resin layer is applied to both conductive and semiconductive regions of the device, and metal is plated upon terminals to create a conductive element. The device may be a varistor, thermistor, resistor, or other microelectronic component having a multi-sided body and terminal structures that are capable of receiving a resin coating. The multi-sided body has a resin coating on at least a portion of an exterior surface, the resin coating substantially preventing plating of metal onto the exterior surface of the body. One suitable resin coating that may be employed is a thermoset resin comprising a B-staged divinylsiloxane-bis(benzocyclobutene)(i.e. “BCB”) resin dissolved in mesitylene solvent.
    Type: Application
    Filed: March 16, 2001
    Publication date: November 1, 2001
    Inventors: Robert H. Heistand, John L. Galvagni, Jeffrey P. Mevissen, Robert Moffatt Kennedy
  • Patent number: 5891934
    Abstract: Pigments that have been at least partially treated to form surface-attached functional groups are combined with long chain amine oxides in an ink-jet ink to provide waterfastness. The ink-jet ink for ink-jet printing comprises: (a) a vehicle comprising (1) 0 to about 30 wt % of at least one organic solvent, and (2) 0 to about 30 wt % of at least one water-soluble surfactant, and (3) about 0.1 to 10 wt % of at least one zwitterionic surfactant; (b) about 1 to 20 wt % of at least one chemically-modified, water-soluble macromolecular chromophore comprising a pigment having functional groups covalently attached thereto; and (c) the balance water. The inks of the invention evidence increased waterfastness with the presence of the zwitterionic surfactant, yet other properties, such as decap, kogation, and edge acuity, are not adversely affected by the presence of the zwitterionic surfactant. Indeed, decap and edge acuity are improved by the presence of the zwitterionic surfactant.
    Type: Grant
    Filed: October 22, 1997
    Date of Patent: April 6, 1999
    Assignee: Hewlett-Packard Company
    Inventors: John Robert Moffatt, Joseph W. Tsang