Patents by Inventor Robert Powers

Robert Powers has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220098084
    Abstract: A method of forming an optical fiber preform includes flowing a precursor stream through a burner toward a substrate, the precursor stream comprising a glass precursor gas and a carrier gas, the carrier gas having a kinematic viscosity at 2000 K of greater than 5 cm2/sec and a ratio of heat capacity to universal gas constant (Cp/R) 2000 K of less than 4; flowing an inflammable gas through the burner; pyrogenically forming glass particles from the glass precursor gas, the pyrogenically forming comprising combusting the inflammable gas; flowing a shield gas through the burner, the shield gas flowing between the precursor stream and the inflammable gas, the shield gas having a kinematic viscosity at 2000 K of greater than 5 cm2/sec and a ratio of heat capacity to universal gas constant (Cp/R) at 2000 K of less than 4; and depositing the glass particles onto the substrate.
    Type: Application
    Filed: May 18, 2021
    Publication date: March 31, 2022
    Inventors: Dale Robert Powers, Pushkar Tandon
  • Patent number: 11242277
    Abstract: A method of producing soot, including: combusting a first fuel stream and a first oxidizer at a burner face; combusting a second fuel stream and a second oxidizer at the burner face, wherein the second fuel stream and the second oxidizer are premixed in advance of the burner face and a second equivalence ratio of the second fuel stream and the second oxidizer is less than about 1; and combusting a silicon-containing fuel into a plurality of soot particles, wherein the second fuel stream and the second oxidizer are combusted between the first fuel stream and the silicon-containing fuel. Applying this method of producing soot to deposit a preform suitable for the manufacture of optical fibers.
    Type: Grant
    Filed: August 15, 2019
    Date of Patent: February 8, 2022
    Assignee: Corning Incorporated
    Inventors: Manoj Agrawal, Dale Robert Powers, Fei Xia
  • Publication number: 20210401022
    Abstract: The present disclosure relates to a non-soy, legume, protein material that is at least 50% dry weight non-soy, legume, protein; has a pH of about 4-8; and has a Nitrogen Solubility Index of greater than 40%. Preferably, the non-soy, legume, protein material of this disclosure additionally has a Protein Dispersability Index of greater than about 70%. Preferably, the non-soy, legume, protein material comprises at least 20% dry weight pea protein, meets USDA Organic Certification requirements, and is not genetically modified.
    Type: Application
    Filed: June 24, 2020
    Publication date: December 30, 2021
    Inventors: KUSHAL NARAYAN CHANDAK, ALEXANDER EDWARD KING, MARK ROBERT POWERS
  • Publication number: 20210394168
    Abstract: A particulate filter having a porous ceramic honeycomb structure with a first end, a second end, and a plurality of walls having wall surfaces defining a plurality of inner channels. Filtration material deposits are disposed on one or more of the wall surfaces of the honeycomb body. The highly porous deposits provide durable high clean filtration efficiency with small impact on pressure drop through the filter.
    Type: Application
    Filed: September 7, 2021
    Publication date: December 23, 2021
    Inventors: Douglas Munroe Beall, Thorsten Rolf Boger, Dana Craig Bookbinder, Thomas Jean Glasson, Dale Robert Powers, Pushkar Tandon, Jianguo Wang, Huiqing Wu, Xinfeng Xing
  • Publication number: 20210354071
    Abstract: Filtration articles herein exhibit excellent filtration efficiency and pressure drop before and after water durability testing. The articles comprise: a honeycomb filter body; inorganic deposits disposed within the honeycomb filter body at a loading of less than or equal to 20 grams of the inorganic deposits per liter of the honeycomb filter body. The inorganic deposits are comprised of refractory inorganic nanoparticles bound by a high temperature binder comprising one or more inorganic components. At least a portion of the inorganic deposits form a porous inorganic network over portions of inlet walls of the honeycomb filter body.
    Type: Application
    Filed: August 30, 2019
    Publication date: November 18, 2021
    Inventors: William Peter ADDIEGO, Xiaoran FANG, Thomas Jean GLASSON, Roychelle Sheneen INGRAM-OGUNWUMI, Mark Alan LEWIS, Cai LIU, Dale Robert POWERS, Todd Parrish ST CLAIR, Jianguo WANG, Huiqing WU, Xinfeng XING, Danhong ZHONG
  • Publication number: 20210347702
    Abstract: A method for applying a surface treatment to a plugged honeycomb body comprising porous wall includes: atomizing particles of an inorganic material into liquid-particulate-binder droplets comprised of a liquid vehicle, a binder material, and the particles; evaporating substantially all of the liquid vehicle from the droplets to form agglomerates comprised of the particles and the binder material; depositing the agglomerates onto the porous walls of the plugged honeycomb body; wherein the agglomerates are disposed on, or in, or both on and in, the porous walls.
    Type: Application
    Filed: August 30, 2019
    Publication date: November 11, 2021
    Inventors: Joseph Henry Citriniti, Christopher Lane Kerr, Stefan Wolfgang Kramel, Cai Liu, Shyam Prasad Mudiraj, Dale Robert Powers, Michael George Shultz, Jason Daniel Steadman, Huiqing Wu, Xinfeng Xing
  • Patent number: 11117124
    Abstract: A honeycomb body having a porous ceramic honeycomb structure with a first end, a second end, and a plurality of walls having wall surfaces defining a plurality of inner channels. A highly porous layer is disposed on one or more of the wall surfaces of the honeycomb body. The highly porous layer has a porosity greater than 90%, and has an average thickness of greater than or equal to 0.5 ?m and less than or equal to 10 ?m. A method of making a honeycomb body includes depositing a layer precursor on a ceramic honeycomb body and binding the layer precursor to the ceramic honeycomb body to form the highly porous layer.
    Type: Grant
    Filed: October 31, 2018
    Date of Patent: September 14, 2021
    Assignee: Corning Incorporated
    Inventors: Douglas Munroe Beall, Thorsten Rolf Boger, Dana Craig Bookbinder, Thomas Jean Glasson, Dale Robert Powers, Pushkar Tandon, Jianguo Wang, Huiqing Wu, Xinfeng Xing
  • Publication number: 20210205750
    Abstract: A honeycomb body (100) having a porous ceramic honeycomb structure with a first end (105), a second end (135), and a plurality of walls (115) having wall surfaces defining a plurality of inner channels (110). A porous material is disposed on one or more of the wall surfaces of the honeycomb body (100). A method for forming a honeycomb body (100) includes depositing a porous inorganic material on a ceramic honeycomb body (100) and binding the porous inorganic material to the ceramic honeycomb body (100) to form the porous layer.
    Type: Application
    Filed: September 3, 2018
    Publication date: July 8, 2021
    Inventors: Cai Liu, Dale Robert Powers, Jianguo Wang, Huiqing Wu, Xinfeng Xing
  • Publication number: 20210197105
    Abstract: Methods for applying a surface treatment to a plugged honeycomb body comprising porous wall includes: atomizing particles of an inorganic material into liquid-particulate-binder droplets comprised of an aqueous vehicle, a binder material, and the particles, evaporating substantially all of the aqueous vehicle from the droplets to form agglomerates comprised of the particles and the binder material, and depositing the agglomerates onto the porous walls of the plugged honeycomb body, wherein the agglomerates are disposed on, or in, or both on and in, the porous walls. Plugged honeycomb bodies comprising porous walls and inorganic material deposited thereon are also disclosed.
    Type: Application
    Filed: August 30, 2019
    Publication date: July 1, 2021
    Inventors: Yunfeng Gu, Mark Alan Lewis, Cai Liu, Dale Robert Powers, Todd Parrish St Clair, Jianguo Wang, Huiqing Wu, Xinfeng Xing, Danhong Zhong
  • Publication number: 20210179501
    Abstract: A method for applying a surface treatment to a plugged honeycomb body comprising porous wall includes: mixing particles of an inorganic material with a liquid vehicle and a binder material to form a liquid-particulate-binder stream; mixing the liquid-particulate-binder stream with an atomizing gas, directing the liquid-particulate-binder stream into an atomizing nozzle thereby atomizing the particles into liquid-particulate-binder droplets comprised of the liquid vehicle, he binder material, and the particles; conveying the droplets toward the plugged honeycomb body by a gaseous carrier stream, wherein the gaseous carrier stream comprises a carrier gas and the atomizing gas; evaporating substantially all of the liquid vehicle from the droplets to form agglomerates comprised of the particles and the binder material; depositing the agglomerates onto the porous walls of the plugged honeycomb body; wherein the deposited agglomerates are disposed on, or in, or both on and in, the porous walls.
    Type: Application
    Filed: August 30, 2019
    Publication date: June 17, 2021
    Inventors: Mark Alan Lewis, Cai Liu, Dale Robert Powers, Todd Parrish St Clair, Jianguo Wang, Huiqing Wu, Fei Xia, Xinfeng Xing, Danhong Zhong
  • Publication number: 20210162455
    Abstract: A flame deposition method is disclosed for forming hydrophobic nanotextured surfaces with improved adhesion and durability for long-term use. The method according to present disclosure can produce nanotextured surfaces with contact angles greater than 140°. Coatings thus prepared exhibit enhanced durability, maintaining water contact angles of greater than 120° after approximately 200,000 abrasion cycles using a cloth wipe resistance test.
    Type: Application
    Filed: November 30, 2020
    Publication date: June 3, 2021
    Inventors: Jiangwei Feng, Guisong Lu, Dale Robert Powers, He Wang, Huiqing Wu
  • Publication number: 20210087099
    Abstract: A method of forming an optical fiber preform includes the steps: igniting a burner having a fume tube assembly to produce a first spray size of silicon dioxide particles; depositing the silicon dioxide particles on a core cane to produce a soot blank; and adjusting an effective diameter of an aperture of the fume tube assembly to produce a second spray size of the silicon dioxide particles. The second spray size is larger than the first spray size.
    Type: Application
    Filed: December 7, 2020
    Publication date: March 25, 2021
    Inventors: James Henry Faler, Dale Robert Powers, Fei Xia, Chunfeng Zhou
  • Patent number: 10882777
    Abstract: A method of forming an optical fiber preform includes the steps: igniting a burner having a fume tube assembly to produce a first spray size of silicon dioxide particles; depositing the silicon dioxide particles on a core cane to produce a soot blank; and adjusting an effective diameter of an aperture of the fume tube assembly to produce a second spray size of the silicon dioxide particles. The second spray size is larger than the first spray size.
    Type: Grant
    Filed: March 8, 2018
    Date of Patent: January 5, 2021
    Assignee: Corning Incorporated
    Inventors: James Henry Faler, Dale Robert Powers, Fei Xia, Chunfeng Zhou
  • Publication number: 20200353401
    Abstract: A honeycomb body having a porous ceramic honeycomb structure with a first end, a second end, and a plurality of walls having wall surfaces defining a plurality of inner channels. A highly porous layer is disposed on one or more of the wall surfaces of the honeycomb body. The highly porous layer has a porosity greater than 90%, and has an average thickness of greater than or equal to 0.5 ?m and less than or equal to 10 ?m. A method of making a honeycomb body includes depositing a layer precursor on a ceramic honeycomb body and binding the layer precursor to the ceramic honeycomb body to form the highly porous layer.
    Type: Application
    Filed: October 31, 2018
    Publication date: November 12, 2020
    Inventors: Douglas Munroe Beall, Thorsten Rolf Boger, Dana Craig Bookbinder, Thomas Jean Glasson, Dale Robert Powers, Pushkar Tandon, Jianguo Wang, Huiqing Wu, Xinfeng Xing
  • Publication number: 20200148579
    Abstract: A method of producing bi-modal particles includes the steps of igniting a first precursor gas using a primary burner thereby producing a first plurality of particles of a first size, fluidly transporting the first plurality of particles down a particle tube, igniting a second precursor gas using a secondary burner thereby producing a second plurality of particles of a second size, flowing the second plurality of particles into the first plurality of particles, and capturing the first and second plurality of particles.
    Type: Application
    Filed: January 13, 2020
    Publication date: May 14, 2020
    Inventors: Laura Beth Cook, Curtis Robert Fekety, Yunfeng Gu, Dale Robert Powers, Christopher Scott Thomas, Srinivas Vemury, Fei Xia, Chunfeng Zhou
  • Publication number: 20200062635
    Abstract: A method of producing soot, including: combusting a first fuel stream and a first oxidizer at a burner face; combusting a second fuel stream and a second oxidizer at the burner face, wherein the second fuel stream and the second oxidizer are premixed in advance of the burner face and a second equivalence ratio of the second fuel stream and the second oxidizer is less than about 1; and combusting a silicon-containing fuel into a plurality of soot particles, wherein the second fuel stream and the second oxidizer are combusted between the first fuel stream and the silicon-containing fuel. Applying this method of producing soot to deposit a preform suitable for the manufacture of optical fibers.
    Type: Application
    Filed: August 15, 2019
    Publication date: February 27, 2020
    Inventors: Manoj Agrawal, Dale Robert Powers, Fei Xia
  • Patent number: 10562804
    Abstract: A method of producing bi-modal particles includes the steps of igniting a first precursor gas using a primary burner thereby producing a first plurality of particles of a first size, fluidly transporting the first plurality of particles down a particle tube, igniting a second precursor gas using a secondary burner thereby producing a second plurality of particles of a second size, flowing the second plurality of particles into the first plurality of particles, and capturing the first and second plurality of particles.
    Type: Grant
    Filed: March 10, 2017
    Date of Patent: February 18, 2020
    Assignee: Corning Incorporated
    Inventors: Laura Beth Cook, Curtis Robert Fekety, Yunfeng Gu, Dale Robert Powers, Christopher Scott Thomas, Srinivas Vemury, Fei Xia, Chunfeng Zhou
  • Patent number: 10538475
    Abstract: This disclosure relates to amphiphilic compounds containing a cyclobutene or cyclobutane moiety. In some embodiments, the compounds are useful for treating infection by Mycobacterium such as Mycobacterium tuberculosis. Cyclobutene containing compounds are also useful as monomers in the preparation of amphiphilic polymers.
    Type: Grant
    Filed: May 28, 2013
    Date of Patent: January 21, 2020
    Assignee: NUtech Ventures
    Inventors: Wantanee Sittiwong, Patrick H. Dussault, Raul Barletta, Robert Powers
  • Patent number: 10429589
    Abstract: An optical fiber for efficient coupling of optical signals to photonic devices. The optical fiber includes a Cl doped tapered core region with a changing outer diameter and changing maximum core refractive index to provide improved coupling at wavelength of interest to photonic devices. The photonic devices may be, for example, silicon photonic devices with an operating wavelength at or near 1310 nm, or at or near 1550 nm.
    Type: Grant
    Filed: February 5, 2018
    Date of Patent: October 1, 2019
    Assignee: Corning Incorporated
    Inventors: Dana Craig Bookbinder, Ming-Jun Li, Dale Robert Powers, Pushkar Tandon
  • Publication number: 20190256399
    Abstract: A process for manufacturing glass articles from powder at low temperatures includes the steps of preparing a slurry of powder suspended in a liquid; depositing the slurry on a substrate; drying the slurry to form a layer on the substrate; depositing slurry on the layer; drying the slurry deposited on the layer on the substrate to form another layer; repeating the steps of depositing a slurry and drying the to form a plurality of sequential layers on the substrate; and consolidating the plurality of sequential layers to form a glass article. The process requires a small manufacturing footprint, and facilitates the manufacture of very large near-net shape glass articles.
    Type: Application
    Filed: February 18, 2019
    Publication date: August 22, 2019
    Inventors: Sezhian Annamalai, Thomas Richard Chapman, Kenneth Edward Hrdina, Douglas Hull Jennings, Nicolas LeBlond, Dale Robert Powers