Patents by Inventor Robert S. Chau

Robert S. Chau has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170170318
    Abstract: A transistor having a narrow bandgap semiconductor source/drain region is described. The transistor includes a gate electrode formed on a gate dielectric layer formed on a silicon layer. A pair of source/drain regions are formed on opposite sides of the gate electrode wherein said pair of source/drain regions comprise a narrow bandgap semiconductor film formed in the silicon layer on opposite sides of the gate electrode.
    Type: Application
    Filed: February 24, 2017
    Publication date: June 15, 2017
    Inventors: Robert S. Chau, Suman Datta, Jack Kavalieros, Justin K. Brask, Mark L. Doczy, Matthew Metz
  • Publication number: 20170162453
    Abstract: Trench-confined selective epitaxial growth process in which epitaxial growth of a semiconductor device layer proceeds within the confines of a trench. In embodiments, a trench is fabricated to include a pristine, planar semiconductor seeding surface disposed at the bottom of the trench. Semiconductor regions around the seeding surface may be recessed relative to the seeding surface with Isolation dielectric disposed there on to surround the semiconductor seeding layer and form the trench. In embodiments to form the trench, a sacrificial hardmask fin may be covered in dielectric which is then planarized to expose the hardmask fin, which is then removed to expose the seeding surface. A semiconductor device layer is formed from the seeding surface through selective heteroepitaxy. In embodiments, non-planar devices are formed from the semiconductor device layer by recessing a top surface of the isolation dielectric.
    Type: Application
    Filed: February 16, 2017
    Publication date: June 8, 2017
    Inventors: Ravi Pillarisetty, Seung Hoon Sung, Niti Goel, Jack T. Kavalieros, Sansaptak Dasgupta, Van H. Le, Willy Rachmady, Marko Radosavljevic, Gilbert Dewey, Han Wui Then, Niloy Mukherjee, Matthew V. Metz, Robert S. Chau
  • Publication number: 20170162653
    Abstract: Semiconductor devices having germanium active layers with underlying diffusion barrier layers are described. For example, a semiconductor device includes a gate electrode stack disposed above a substrate. A germanium active layer is disposed above the substrate, underneath the gate electrode stack. A diffusion barrier layer is disposed above the substrate, below the germanium active layer. A junction leakage suppression layer is disposed above the substrate, below the diffusion barrier layer. Source and drain regions are disposed above the junction leakage suppression layer, on either side of the gate electrode stack.
    Type: Application
    Filed: February 15, 2017
    Publication date: June 8, 2017
    Inventors: Willy RACHMADY, Van H. LE, Ravi PILLARISETTY, Jack T. KAVALIEROS, Robert S. CHAU, Harold W. KENNEL
  • Patent number: 9673045
    Abstract: An insulating layer is conformally deposited on a plurality of mesa structures in a trench on a substrate. The insulating layer fills a space outside the mesa structures. A nucleation layer is deposited on the mesa structures. A III-V material layer is deposited on the nucleation layer. The III-V material layer is laterally grown over the insulating layer.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: June 6, 2017
    Assignee: Intel Corporation
    Inventors: Sansaptak Dasgupta, Han Wui Then, Seung Hoon Sung, Sanaz K. Gardner, Marko Radosavljevic, Benjamin Chu-Kung, Robert S. Chau
  • Publication number: 20170154960
    Abstract: Nanowire-based gate all-around transistor devices having one or more active nanowires and one or more inactive nanowires are described herein. Methods to fabricate such devices are also described. One or more embodiments of the present invention are directed at approaches for varying the gate width of a transistor structure comprising a nanowire stack having a distinct number of nanowires. The approaches include rendering a certain number of nanowires inactive (i.e. so that current does not flow through the nanowire), by severing the channel region, burying the source and drain regions, or both. Overall, the gate width of nanowire-based structures having a plurality of nanowires may be varied by rendering a certain number of nanowires inactive, while maintaining other nanowires as active.
    Type: Application
    Filed: February 9, 2017
    Publication date: June 1, 2017
    Inventors: Willy RACHMADY, Van H. LE, Ravi PILLARISETTY, Jack T. KAVALIEROS, Robert S. CHAU, Seung Hoon SUNG
  • Publication number: 20170154981
    Abstract: Electronic device fins may be formed by epitaxially growing a first layer of material on a substrate surface at a bottom of a trench formed between sidewalls of shallow trench isolation (STI) regions. The trench height may be at least 1.5 times its width, and the first layer may fill less than the trench height. Then a second layer of material may be epitaxially grown on the first layer in the trench and over top surfaces of the STI regions. The second layer may have a second width extending over the trench and over portions of top surfaces of the STI regions. The second layer may then be patterned and etched to form a pair of electronic device fins over portions of the top surfaces of the STI regions, proximate to the trench. This process may avoid crystaline defects in the fins due to lattice mismatch in the layer interfaces.
    Type: Application
    Filed: February 10, 2017
    Publication date: June 1, 2017
    Inventors: Niti Goel, Benjamin Chu-Kung, Sansaptak Dasgupta, Niloy Mukherjee, Matthew V. Metz, Van H. Le, Jack T. Kavalieros, Robert S. Chau, Ravi Pillarisetty
  • Patent number: 9666708
    Abstract: Techniques related to III-N transistors having enhanced breakdown voltage, systems incorporating such transistors, and methods for forming them are discussed. Such transistors include a hardmask having an opening over a substrate, a source, a drain, and a channel between the source and drain, and a portion of the source or the drain disposed over the opening of the hardmask.
    Type: Grant
    Filed: March 26, 2014
    Date of Patent: May 30, 2017
    Assignee: Intel Corporation
    Inventors: Han Wui Then, Benjamin Chu-Kung, Sansaptak Dasgupta, Robert S. Chau, Seung Hoon Sung, Ravi Pillarisetty, Marko Radosavljevic
  • Patent number: 9666583
    Abstract: An apparatus including a device including a channel material having a first lattice structure on a well of a well material having a matched lattice structure in a buffer material having a second lattice structure that is different than the first lattice structure. A method including forming a trench in a buffer material; forming an n-type well material in the trench, the n-type well material having a lattice structure that is different than a lattice structure of the buffer material; and forming an n-type transistor. A system including a computer including a processor including complimentary metal oxide semiconductor circuitry including an n-type transistor including a channel material, the channel material having a first lattice structure on a well disposed in a buffer material having a second lattice structure that is different than the first lattice structure, the n-type transistor coupled to a p-type transistor.
    Type: Grant
    Filed: June 8, 2015
    Date of Patent: May 30, 2017
    Assignee: Intel Corporation
    Inventors: Niti Goel, Ravi Pillarisetty, Niloy Mukherjee, Robert S. Chau, Willy Rachmady, Matthew V. Metz, Van H. Le, Jack T. Kavalieros, Marko Radosavljevic, Benjamin Chu-Kung, Gilbert Dewey, Seung Hoon Sung
  • Publication number: 20170148982
    Abstract: Oxide-based three-terminal resistive switching logic devices and methods of fabricating oxide-based three-terminal resistive switching logic devices are described. In a first example, a three-terminal resistive switching logic device includes an active region disposed above a substrate. The active region includes an active oxide material region disposed directly between a metal source region and a metal drain region. The device also includes a gate electrode disposed above the active oxide material region. In a second example, a three-terminal resistive switching logic device includes an active region disposed above a substrate. The active region includes a first active oxide material region spaced apart from a second oxide material region. The device also includes metal input regions disposed on either side of the first and second active oxide material regions. A metal output region is disposed between the first and second active oxide material regions.
    Type: Application
    Filed: June 26, 2014
    Publication date: May 25, 2017
    Inventors: ELIJAH V. KARPOV, PRASHANT MAJHI, RAVI PILLARISETTY, BRIAN S. DOYLE, NILOY MUKHERJEE, UDAY SHAH, ROBERT S. CHAU
  • Patent number: 9660067
    Abstract: III-N transistors with epitaxial semiconductor heterostructures having steep subthreshold slope are described. In embodiments, a III-N HFET employs a gate stack with balanced and opposing III-N polarization materials. Overall effective polarization of the opposing III-N polarization materials may be modulated by an external field, for example associated with an applied gate electrode voltage. In embodiments, polarization strength differences between the III-N materials within the gate stack are tuned by composition and/or film thickness to achieve a desired transistor threshold voltage (Vt). With polarization strengths within the gate stack balanced and opposing each other, both forward and reverse gate voltage sweeps may generate a steep sub-threshold swing in drain current as charge carriers are transferred to and from the III-N polarization layers and the III-N channel semiconductor.
    Type: Grant
    Filed: March 25, 2014
    Date of Patent: May 23, 2017
    Assignee: Intel Corporation
    Inventors: Han Wui Then, Sansaptak Dasgupta, Marko Radosavljevic, Robert S. Chau
  • Patent number: 9660064
    Abstract: Transistors or transistor layers include an InAlN and AlGaN bi-layer capping stack on a 2DEG GaN channel, such as for GaN MOS structures on Si substrates. The GaN channel may be formed in a GaN buffer layer or stack, to compensate for the high crystal structure lattice size and coefficient of thermal expansion mismatch between GaN and Si. The bi-layer capping stack an upper InAlN layer on a lower AlGaN layer to induce charge polarization in the channel, compensate for poor composition uniformity (e.g., of Al), and compensate for rough surface morphology of the bottom surface of the InAlN material. It may lead to a sheet resistance between 250 and 350 ohms/sqr. It may also reduce bowing of the GaN on Si wafers during growth of the layer of InAlN material, and provide a AlGaN setback layer for etching the InAlN layer in the gate region.
    Type: Grant
    Filed: December 26, 2013
    Date of Patent: May 23, 2017
    Assignee: Intel Corporation
    Inventors: Sansaptak Dasgupta, Han Wui Then, Marko Radosavljevic, Sanaz K. Gardner, Seung Hoon Sung, Benjamin Chu-Kung, Robert S. Chau
  • Patent number: 9660085
    Abstract: Techniques are disclosed for forming a GaN transistor on a semiconductor substrate. An insulating layer forms on top of a semiconductor substrate. A trench, filled with a trench material comprising a III-V semiconductor material, forms through the insulating layer and extends into the semiconductor substrate. A channel structure, containing III-V material having a defect density lower than the trench material, forms directly on top of the insulating layer and adjacent to the trench. A source and drain form on opposite sides of the channel structure, and a gate forms on the channel structure. The semiconductor substrate forms a plane upon which both GaN transistors and other transistors can form.
    Type: Grant
    Filed: December 23, 2013
    Date of Patent: May 23, 2017
    Assignee: Intel Coporation
    Inventors: Han Wui Then, Robert S. Chau, Sansaptak Dasgupta, Marko Radosavljevic, Benjamin Chu-Kung, Seung Hoon Hoon Sung, Sanaz K. Gardner, Ravi Pillarisetty
  • Publication number: 20170141219
    Abstract: Embodiments include epitaxial semiconductor stacks for reduced defect densities in III-N device layers grown over non-III-N substrates, such as silicon substrates. In embodiments, a metamorphic buffer includes an AlxIn1-xN layer lattice matched to an overlying GaN device layers to reduce thermal mismatch induced defects. Such crystalline epitaxial semiconductor stacks may be device layers for HEMT or LED fabrication, for example. System on Chip (SoC) solutions integrating an RFIC with a PMIC using a transistor technology based on group III-nitrides (III-N) capable of achieving high Ft and also sufficiently high breakdown voltage (BV) to implement high voltage and/or high power circuits may be provided on the semiconductor stacks in a first area of the silicon substrate while silicon-based CMOS circuitry is provided in a second area of the substrate.
    Type: Application
    Filed: January 31, 2017
    Publication date: May 18, 2017
    Inventors: Sansaptak Dasgupta, Han Wui Then, Niloy Mukherjee, Marko Radosavljevic, Robert S. Chau
  • Patent number: 9653680
    Abstract: The present disclosure provides a system and method for forming a resistive random access memory (RRAM) device. A RRAM device consistent with the present disclosure includes a substrate and a first electrode disposed thereon. The RRAM device includes a second electrode disposed over the first electrode and a RRAM dielectric layer disposed between the first electrode and the second electrode. The RRAM dielectric layer has a recess at a top center portion at the interface between the second electrode and the RRAM dielectric layer.
    Type: Grant
    Filed: June 27, 2015
    Date of Patent: May 16, 2017
    Assignee: INTEL CORPORATION
    Inventors: Ravi Pillarisetty, Prashant Majhi, Uday Shah, Niloy Mukherjee, Elijah V. Karpov, Brian S. Doyle, Robert S. Chau
  • Patent number: 9653559
    Abstract: A die includes a semiconductive prominence and a surface-doped structure on the prominence. The surface-doped structure makes contact with contact metallization. The prominence may be a source- or drain contact for a transistor. Processes of making the surface-doped structure include wet-vapor- and implantation techniques, and include annealing techniques to drive in the surface doping to only near-surface depths in the semiconductive prominence.
    Type: Grant
    Filed: December 27, 2011
    Date of Patent: May 16, 2017
    Assignee: Intel Corporation
    Inventors: Niloy Mukherjee, Gilbert Dewey, Marko Radosavljevic, Niti Goel, Sanaz Kabehie, Matthew V. Metz, Robert S. Chau
  • Publication number: 20170133364
    Abstract: III-N high voltage MOS capacitors and System on Chip (SoC) solutions integrating at least one III-N MOS capacitor capable of high breakdown voltages (BV) to implement high voltage and/or high power circuits. Breakdown voltages over 4V may be achieved avoiding any need to series couple capacitors in an RFIC and/or PMIC. In embodiments, depletion mode III-N capacitors including a GaN layer in which a two dimensional electron gas (2DEG) is formed at threshold voltages below 0V are monolithically integrated with group IV transistor architectures, such as planar and non-planar silicon CMOS transistor technologies. In embodiments, silicon substrates are etched to provide a (111) epitaxial growth surface over which a GaN layer and III-N barrier layer are formed. In embodiments, a high-K dielectric layer is deposited, and capacitor terminal contacts are made to the 2DEG and over the dielectric layer.
    Type: Application
    Filed: June 12, 2015
    Publication date: May 11, 2017
    Inventors: Han Wui THEN, Sansaptak Dasgupta, Gerhard Schrom, Valluri R. Rao, Robert S. Chau
  • Publication number: 20170133497
    Abstract: Embodiments include high electron mobility transistors (HEMT). In embodiments, a gate electrode is spaced apart by different distances from a source and drain semiconductor region to provide high breakdown voltage and low on-state resistance. In embodiments, self-alignment techniques are applied to form a dielectric liner in trenches and over an intervening mandrel to independently define a gate length, gate-source length, and gate-drain length with a single masking operation. In embodiments, III-N HEMTs include fluorine doped semiconductor barrier layers for threshold voltage tuning and/or enhancement mode operation.
    Type: Application
    Filed: January 19, 2017
    Publication date: May 11, 2017
    Inventors: Sansaptak Dasgupta, Han Wui Then, Marko Radosavljevic, Niloy Mukherjee, Niti Goel, Sanaz Kabehie Gardner, Seung Hoon Sung, Ravi Pillarisetty, Robert S. Chau
  • Patent number: 9647208
    Abstract: Low voltage embedded memory having conductive oxide and electrode stacks is described. For example, a material layer stack for a memory element includes a first conductive electrode. A conductive oxide layer is disposed on the first conductive electrode. The conductive oxide layer has a plurality of oxygen vacancies therein. A second electrode is disposed on the conductive oxide layer.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: May 9, 2017
    Assignee: Intel Corporation
    Inventors: Elijah V. Karpov, Brian S. Doyle, Charles C. Kuo, Robert S. Chau, Eric R. Dickey, Michael Stephen Bowen, Sey-Shing Sun
  • Publication number: 20170125524
    Abstract: Ge and III-V channel semiconductor devices having maximized compliance and free surface relaxation and methods of fabricating such Ge and III-V channel semiconductor devices are described. For example, a semiconductor device includes a semiconductor fin disposed above a semiconductor substrate. The semiconductor fin has a central protruding or recessed segment spaced apart from a pair of protruding outer segments along a length of the semiconductor fin. A cladding layer region is disposed on the central protruding or recessed segment of the semiconductor fin. A gate stack is disposed on the cladding layer region. Source/drain regions are disposed in the pair of protruding outer segments of the semiconductor fin.
    Type: Application
    Filed: January 12, 2017
    Publication date: May 4, 2017
    Applicants: Intel Corporation, Intel Corporation
    Inventors: RAVI PILLARISETTY, SANSAPTAK DASGUPTA, NITI GOEL, VAN H. LE, MARKO RADOSAVLJEVIC, GILBERT DEWEY, NILOY MUKHERJEE, MATTHEW V. METZ, WILLY RACHMADY, JACK T. KAVALIEROS, BENJAMIN CHU-KUNG, HAROLD W. KENNEL, STEPHEN M. CEA, ROBERT S. CHAU
  • Patent number: 9640634
    Abstract: Microelectronic structures embodying the present invention include a field effect transistor (FET) having highly conductive source/drain extensions. Formation of such highly conductive source/drain extensions includes forming a passivated recess which is back filled by epitaxial deposition of doped material to form the source/drain junctions. The recesses include a laterally extending region that underlies a portion of the gate structure. Such a lateral extension may underlie a sidewall spacer adjacent to the vertical sidewalls of the gate electrode, or may extend further into the channel portion of a FET such that the lateral recess underlies the gate electrode portion of the gate structure. In one embodiment the recess is back filled by an in-situ epitaxial deposition of a bilayer of oppositely doped material. In this way, a very abrupt junction is achieved that provides a relatively low resistance source/drain extension and further provides good off-state subthreshold leakage characteristics.
    Type: Grant
    Filed: February 4, 2010
    Date of Patent: May 2, 2017
    Assignee: Intel Corporation
    Inventors: Anand S. Murthy, Robert S. Chau, Patrick Morrow, Chia-Hong Jan, Paul Packan