Patents by Inventor Robert S. Chau

Robert S. Chau has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9882121
    Abstract: Techniques are disclosed for fabricating a self-aligned spin-transfer torque memory (STTM) device with a dot-contacted free magnetic layer. In some embodiments, the disclosed STTM device includes a first dielectric spacer covering sidewalls of an electrically conductive hardmask layer that is patterned to provide an electronic contact for the STTM's free magnetic layer. The hardmask contact can be narrower than the free magnetic layer. The first dielectric spacer can be utilized in patterning the STTM's fixed magnetic layer. In some embodiments, the STTM further includes an optional second dielectric spacer covering sidewalls of its free magnetic layer. The second dielectric spacer can be utilized in patterning the STTM's fixed magnetic layer and may serve, at least in part, to protect the sidewalls of the free magnetic layer from redepositing of etch byproducts during such patterning, thereby preventing electrical shorting between the fixed magnetic layer and the free magnetic layer.
    Type: Grant
    Filed: March 28, 2014
    Date of Patent: January 30, 2018
    Assignee: INTEL CORPORATION
    Inventors: Charles C. Kuo, Kaan Oguz, Brian S. Doyle, Mark L. Doczy, David L. Kencke, Satyarth Suri, Robert S. Chau
  • Patent number: 9882123
    Abstract: Perpendicular spin transfer torque memory (STTM) devices with enhanced stability and methods of fabricating perpendicular STTM devices with enhanced stability are described. For example, a material layer stack for a magnetic tunneling junction includes a fixed magnetic layer. A dielectric layer is disposed above the fixed magnetic layer. A free magnetic layer is disposed above the dielectric layer. A conductive oxide material layer is disposed on the free magnetic layer.
    Type: Grant
    Filed: October 24, 2016
    Date of Patent: January 30, 2018
    Assignee: Intel Corporation
    Inventors: Brian S. Doyle, Charles C. Kuo, Kaan Oguz, Uday Shah, Elijah V. Karpov, Roksana Golizadeh Mojarad, Mark L. Doczy, Robert S. Chau
  • Publication number: 20180026097
    Abstract: The present description relates to n-channel gallium nitride transistors which include a recessed gate electrode, wherein the polarization layer between the gate electrode and the gallium nitride layer is less than about 1 nm. In additional embodiments, the n-channel gallium nitride transistors may have an asymmetric configuration, wherein a gate-to drain length is greater than a gate-to-source length. In further embodiment, the n-channel gallium nitride transistors may be utilized in wireless power/charging devices for improved efficiencies, longer transmission distances, and smaller form factors, when compared with wireless power/charging devices using silicon-based transistors.
    Type: Application
    Filed: December 18, 2014
    Publication date: January 25, 2018
    Applicant: INTEL CORPORATION
    Inventors: Han Wui Then, Sansaptak Dasgupta, Marko Radosavljevic, Seung Hoon Sung, Sanaz K. Gardner, Robert S. Chau
  • Patent number: 9876014
    Abstract: A quantum well transistor has a germanium quantum well channel region. A silicon-containing etch stop layer provides easy placement of a gate dielectric close to the channel. A group III-V barrier layer adds strain to the channel. Graded silicon germanium layers above and below the channel region improve performance. Multiple gate dielectric materials allow use of a high-k value gate dielectric.
    Type: Grant
    Filed: September 20, 2016
    Date of Patent: January 23, 2018
    Assignee: Intel Corporation
    Inventors: Ravi Pillarisetty, Been-Yih Jin, Benjamin Chu-Kung, Matthew V. Metz, Jack T. Kavalieros, Marko Radosavljevic, Roza Kotlyar, Willy Rachmady, Niloy Mukherjee, Gilbert Dewey, Robert S. Chau
  • Patent number: 9859278
    Abstract: An apparatus including a complimentary metal oxide semiconductor (CMOS) inverter including an n-channel metal oxide semiconductor field effect transistor (MOSFET); and a p-channel MOSFET, wherein a material of a channel in the n-channel MOSFET and a material of a channel in the p-channel MOSFET is subject to a bi-axial tensile strain. A method including forming an n-channel metal oxide semiconductor field effect transistor (MOSFET); forming a p-channel MOSFET; and connecting the gate electrodes and the drain regions of the n-channel MOSFET and the p-channel MOSFET, wherein a material of the channel in the n-channel MOSFET and a material of the channel in the p-channel MOSFET is subject to a bi-axial tensile strain.
    Type: Grant
    Filed: December 27, 2013
    Date of Patent: January 2, 2018
    Assignee: Intel Corporation
    Inventors: Prashant Majhi, Niloy Mukherjee, Ravi Pillarisetty, Willy Rachmady, Robert S. Chau
  • Patent number: 9853107
    Abstract: An embodiment includes a III-V material based device, comprising: a first III-V material based buffer layer on a silicon substrate; a second III-V material based buffer layer on the first III-V material based buffer layer, the second III-V material including aluminum; and a III-V material based device channel layer on the second III-V material based buffer layer. Another embodiment includes the above subject matter and the first and second III-V material based buffer layers each have a lattice parameter equal to the III-V material based device channel layer. Other embodiments are included herein.
    Type: Grant
    Filed: March 28, 2014
    Date of Patent: December 26, 2017
    Assignee: Intel Corporation
    Inventors: Matthew V. Metz, Jack T. Kavalieros, Gilbert Dewey, Willy Rachmady, Benjamin Chu-Kung, Marko Radosavljevic, Han Wui Then, Ravi Pillarisetty, Robert S. Chau
  • Publication number: 20170365681
    Abstract: An interlayer is used to reduce Fermi-level pinning phenomena in a semiconductive device with a semiconductive substrate. The interlayer may be a rare-earth oxide. The interlayer may be an ionic semiconductor. A metallic barrier film may be disposed between the interlayer and a metallic coupling. The interlayer may be a thermal-process combination of the metallic barrier film and the semiconductive substrate. A process of forming the interlayer may include grading the interlayer. A computing system includes the interlayer.
    Type: Application
    Filed: August 16, 2017
    Publication date: December 21, 2017
    Inventors: Gilbert DEWEY, Niloy MUKHERJEE, Matthew METZ, Jack T. KAVALIEROS, Nancy M. ZELICK, Robert S. CHAU
  • Publication number: 20170365677
    Abstract: A nonplanar semiconductor device having a semiconductor body formed on an insulating layer of a substrate. The semiconductor body has a top surface opposite a bottom surface formed on the insulating layer and a pair of laterally opposite sidewalls wherein the distance between the laterally opposite sidewalls at the top surface is greater than at the bottom surface. A gate dielectric layer is formed on the top surface of the semiconductor body and on the sidewalls of the semiconductor body. A gate electrode is formed on the gate dielectric layer on the top surface and sidewalls of the semiconductor body. A pair of source/drain regions are formed in the semiconductor body on opposite sides of the gate electrode.
    Type: Application
    Filed: August 9, 2017
    Publication date: December 21, 2017
    Inventors: Uday SHAH, Brian S. DOYLE, Justin K. BRASK, Robert S. CHAU, Thomas A. LETSON
  • Patent number: 9847448
    Abstract: Methods of forming III-V LED structures on silicon fin templates are described. Those methods and structures may include forming an n-doped III-V layer on a silicon (111) plane of a silicon fin, forming a quantum well layer on the n-doped III-V layer, forming a p-doped III-V layer on the quantum well layer, and then forming an ohmic contact layer on the p-doped III-V layer.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: December 19, 2017
    Assignee: Intel Corporation
    Inventors: Sansaptak Dasgupta, Han Wui Then, Robert S. Chau, Marko Radosavljevic, Benjamin Chu-Kung, Sanaz Gardner
  • Publication number: 20170352532
    Abstract: Embodiments of the present disclosure are directed towards an integrated circuit (IC) die. In embodiments, an IC die may include a semiconductor substrate, a group III-Nitride or II-VI wurtzite layer disposed over the semiconductor substrate, and a plurality of buffer structures at least partially embedded in the group III-Nitride or II-VI wurtzite layer. In some embodiments, each of the plurality of buffer structures may include a central member disposed over the semiconductor substrate, a lower lateral member disposed over the semiconductor substrate and extending laterally away from the central member, and an upper lateral member disposed over the central member and extending laterally from the central member in an opposite direction from the lower lateral member. The plurality of buffer structures may be positioned in a staggered arrangement to terminate defects of the group III-Nitride or II-VI wurtzite layer. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: December 17, 2014
    Publication date: December 7, 2017
    Inventors: Sansaptak DASGUPTA, Han Wui THEN, Marko RADOSAVLJEVIC, Robert S. CHAU, Sanaz K. GARDNER, Seung Hoon SUNG
  • Publication number: 20170345476
    Abstract: A material layer stack for a magnetic tunneling junction, the material layer stack including a fixed magnetic layer; a dielectric layer; a free magnetic layer; and an amorphous electrically-conductive seed layer, wherein the fixed magnetic layer is disposed between the dielectric layer and the seed layer. A non-volatile memory device including a material stack including an amorphous electrically-conductive seed layer; and a fixed magnetic layer juxtaposed and in contact with the seed layer. A method including forming an amorphous seed layer on a first electrode of a memory device; forming a material layer stack on the amorphous seed layer, the material stack including a dielectric layer disposed between a fixed magnetic layer and a free magnetic layer, wherein the fixed magnetic layer.
    Type: Application
    Filed: September 26, 2014
    Publication date: November 30, 2017
    Applicants: Intel Corporation, Intel Corporation
    Inventors: Mark L. DOCZY, Kaan OGUZ, Brian S. DOYLE, Charles C. KUO, Robert S. CHAU, Satyarth SURI
  • Patent number: 9825095
    Abstract: An insulating layer is deposited over a transistor structure. The transistor structure comprises a gate electrode over a device layer on a substrate. The transistor structure comprises a first contact region and a second contact region on the device layer at opposite sides of the gate electrode. A trench is formed in the first insulating layer over the first contact region. A metal-insulator phase transition material layer with a S-shaped IV characteristic is deposited in the trench or in the via of the metallization layer above on the source side.
    Type: Grant
    Filed: August 25, 2016
    Date of Patent: November 21, 2017
    Assignee: Intel Corporation
    Inventors: Ravi Pillarisetty, Brian S. Doyle, Elijah V. Karpov, David L. Kencke, Uday Shah, Charles C. Kuo, Robert S. Chau
  • Patent number: 9818870
    Abstract: An apparatus including a heterostructure disposed on a substrate and defining a channel region, the heterostructure including a first material having a first band gap less than a band gap of a material of the substrate and a second material having a second band gap that is greater than the first band gap; and a gate stack on the channel region, wherein the second material is disposed between the first material and the gate stack. A method including forming a first material having a first band gap on a substrate; forming a second material having a second band gap greater than the first band gap on the first material; and forming a gate stack on the second material.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: November 14, 2017
    Assignee: Intel Corporation
    Inventors: Willy Rachmady, Van H. Le, Ravi Pillarisetty, Marko Radosavljevic, Gilbert Dewey, Niloy Mukherjee, Jack T. Kavalieros, Robert S. Chau, Benjamin Chu-Kung, Roza Kotlyar
  • Patent number: 9818847
    Abstract: A high-k gate dielectric interface with a group III-V semiconductor surface of a non-planar transistor channel region is non-directionally doped with nitrogen. In nanowire embodiments, a non-directional nitrogen doping of a high-k gate dielectric interface is performed before or concurrently with a conformal gate electrode deposition through exposure of the gate dielectric to liquid, vapor, gaseous, plasma, or solid state sources of nitrogen. In embodiments, a gate electrode metal is conformally deposited over the gate dielectric and an anneal is performed to uniformly accumulate nitrogen within the gate dielectric along the non-planar III-V semiconductor interface.
    Type: Grant
    Filed: November 17, 2014
    Date of Patent: November 14, 2017
    Assignee: Intel Corporation
    Inventors: Gilbert Dewey, Robert S. Chau, Marko Radosavljevic, Han Wui Then, Scott B. Clendenning, Ravi Pillarisetty
  • Publication number: 20170323972
    Abstract: A transistor having a narrow bandgap semiconductor source/drain region is described. The transistor includes a gate electrode formed on a gate dielectric layer formed on a silicon layer. A pair of source/drain regions are formed on opposite sides of the gate electrode wherein said pair of source/drain regions comprise a narrow bandgap semiconductor film formed in the silicon layer on opposite sides of the gate electrode.
    Type: Application
    Filed: July 26, 2017
    Publication date: November 9, 2017
    Inventors: Robert S. CHAU, Suman DATTA, Jack KAVALIEROS, Justin K. BRASK, Mark L. DOCZY, Matthew METZ
  • Publication number: 20170323946
    Abstract: A III-N semiconductor channel is formed on a III-N transition layer formed on a (111) or (110) surface of a silicon template structure, such as a fin sidewall. In embodiments, the silicon fin has a width comparable to the III-N epitaxial film thicknesses for a more compliant seeding layer, permitting lower defect density and/or reduced epitaxial film thickness. In embodiments, a transition layer is GaN and the semiconductor channel comprises Indium (In) to increase a conduction band offset from the silicon fin. In other embodiments, the fin is sacrificial and either removed or oxidized, or otherwise converted into a dielectric structure during transistor fabrication. In certain embodiments employing a sacrificial fin, the III-N transition layer and semiconductor channel is substantially pure GaN, permitting a breakdown voltage higher than would be sustainable in the presence of the silicon fin.
    Type: Application
    Filed: July 21, 2017
    Publication date: November 9, 2017
    Inventors: Han Wui THEN, Sansaptak DASGUPTA, Marko RADOSAVLJEVIC, Benjamin CHU-KUNG, Sanaz GARDNER, Seung Hoon SUNG, Robert S. Chau
  • Publication number: 20170323928
    Abstract: The present disclosure relates to the fabrication of spin transfer torque memory elements for non-volatile microelectronic memory devices. The spin transfer torque memory element may include a magnetic tunneling junction connected with specifically sized and/or shaped fixed magnetic layer that can be positioned in a specific location adjacent a free magnetic layer. The shaped fixed magnetic layer may concentrate current in the free magnetic layer, which may result in a reduction in the critical current needed to switch a bit cell in the spin transfer torque memory element.
    Type: Application
    Filed: July 24, 2017
    Publication date: November 9, 2017
    Applicant: INTEL CORPORATION
    Inventors: Brian S. Doyle, David L. Kencke, Charles C. Kuo, Dmitri E. Nikonov, Robert S. Chau
  • Patent number: 9806195
    Abstract: A method of fabricating a MOS transistor having a thinned channel region is described. The channel region is etched following removal of a dummy gate. The source and drain regions have relatively low resistance with the process.
    Type: Grant
    Filed: March 14, 2016
    Date of Patent: October 31, 2017
    Assignee: Intel Corporation
    Inventors: Justin K. Brask, Robert S. Chau, Suman Datta, Mark L. Doczy, Brian S. Doyle, Jack T. Kavalieros, Amlan Majumdar, Matthew V. Metz, Marko Radosavljevic
  • Patent number: 9806203
    Abstract: A III-N semiconductor channel is compositionally graded between a transition layer and a III-N polarization layer. In embodiments, a gate stack is deposited over sidewalls of a fin including the graded III-N semiconductor channel allowing for formation of a transport channel in the III-N semiconductor channel adjacent to at least both sidewall surfaces in response to a gate bias voltage. In embodiments, a gate stack is deposited completely around a nanowire including a III-N semiconductor channel compositionally graded to enable formation of a transport channel in the III-N semiconductor channel adjacent to both the polarization layer and the transition layer in response to a gate bias voltage.
    Type: Grant
    Filed: June 9, 2016
    Date of Patent: October 31, 2017
    Assignee: Intel Corporation
    Inventors: Han Wui Then, Sansaptak Dasgupta, Marko Radosavljevic, Benjamin Chu-Kung, Seung Hoon Sung, Sanaz K. Gardner, Robert S. Chau
  • Publication number: 20170309734
    Abstract: A CMOS device includes a PMOS transistor with a first quantum well structure and an NMOS device with a second quantum well structure. The PMOS and NMOS transistors are formed on a substrate.
    Type: Application
    Filed: June 16, 2017
    Publication date: October 26, 2017
    Inventors: Suman DATTA, Mantu K. HUDAIT, Mark L. DOCZY, Jack T. KAVALIEROS, Amlan MAJUMDAR, Justin K. BRASK, Been-Yih JIN, Matthew V. METZ, Robert S. CHAU