Patents by Inventor Robert S. Langer

Robert S. Langer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220110410
    Abstract: A shoe comprises an upper portion, a sole, and a sheet of material. The upper portion is configured to receive a foot of a user. The sole is attached to the upper portion. The sheet of material is coupled to the sole. The material includes a substrate and one or more movable projections. The one or more movable projections are configured to extend from the substrate. The one or more movable projections are configured to move between a first orientation and a second orientation relative to the substrate, in response to the sole of the shoe moving between a generally flat configuration and a generally flexed configuration. The movable projections can have a triangular shape, a concave shape, a convex shape, a rectangular shape, or a barbed shape; and can be arranged in a one-direction pattern, a three-column pattern, a half pattern, a 16x2 pattern, or a checkerboard pattern.
    Type: Application
    Filed: October 8, 2021
    Publication date: April 14, 2022
    Inventors: Robert S. Langer, Katia Bertoldi, Carlo Giovanni Traverso, Sahab Babaee, Ahmad Rafsanjani Abbasi, Simo Pajovic
  • Publication number: 20220091099
    Abstract: Gene editing can be performed by introducing gene-editing components into a cell by mechanical cell disruption. Related apparatus, systems, techniques, and articles are also described.
    Type: Application
    Filed: August 17, 2021
    Publication date: March 24, 2022
    Applicants: Massachusetts Institute of Technology, President and Fellows of Harvard College
    Inventors: Armon R. Sharei, Marc Lajoie, Klavs F. Jensen, Robert S. Langer
  • Publication number: 20220080115
    Abstract: Self-righting articles, such as self-righting capsules for administration to a subject, are generally provided. In some embodiments, the self-righting article may be configured such that the article may orient itself relative to a surface (e.g., a surface of a tissue of a subject). The self-righting articles described herein may comprise one or more tissue engaging surfaces configured to engage (e.g., interface with, inject into, anchor) with a surface (e.g., a surface of a tissue of a subject). In some embodiments, the self-righting article may have a particular shape and/or distribution of density (or mass) which, for example, enables the self-righting behavior of the article. In some embodiments, the self-righting article may comprise a tissue interfacing component and/or a pharmaceutical agent (e.g., for delivery of the active pharmaceutical agent to a location internal of the subject).
    Type: Application
    Filed: May 17, 2018
    Publication date: March 17, 2022
    Applicants: Massachusetts Institute of Technology, The Brigham and Woman's Hospital, Inc.
    Inventors: Carlo Giovanni Traverso, Alex G. Abramson, Ester Caffarel Salvador, Niclas Roxhed, Minsoo Khang, Taylor Bensel, Robert S. Langer
  • Patent number: 11266606
    Abstract: Covalently modified alginate polymers, possessing enhanced biocompatibility and tailored physiochemical properties, as well as methods of making and use thereof, are disclosed herein. The covalently modified alginates are useful as a matrix for coating of any material where reduced fibrosis is desired, such as encapsulated cells for transplantation and medical devices implanted or used in the body.
    Type: Grant
    Filed: September 26, 2019
    Date of Patent: March 8, 2022
    Assignees: MASSACHUSETTS INSTITUTE OF TECHNOLOGY, THE CHILDREN'S MEDICAL CENTER CORPORATION
    Inventors: Arturo J. Vegas, Joshua C. Doloff, Omid Veiseh, Minglin Ma, Robert S. Langer, Daniel G. Anderson
  • Publication number: 20220065271
    Abstract: Described herein is a method and apparatus for harnessing electromagnetic radiation for an untethered operation of an automaton. By employing a selective electromagnetic absorber film with a relatively low-boiling point fluid, an automaton can grasp and lift objects multiple times the mass of the fluid in a controllable fashion.
    Type: Application
    Filed: August 31, 2021
    Publication date: March 3, 2022
    Inventors: Robert S. LANGER, Seyed M. MIRVAKILI
  • Publication number: 20220064584
    Abstract: A method and device for preferentially delivering a compound such as an antigen to the cytosol of an immune cell. The method comprises passing a cell suspension comprising the target immune cell through a microfluidic device and contacting the suspension with the compound(s) or payload to be delivered.
    Type: Application
    Filed: August 4, 2021
    Publication date: March 3, 2022
    Applicants: Massachusetts Institute of Technology, President and Fellows of Harvard College
    Inventors: Armon R. Sharei, Shirley Mao, George Hartoularos, Sophia Liu, Megan Heimann, Pamela Basto, Gregory Szeto, Siddharth Jhunjhunwala, Darrell J. Irvine, Robert S. Langer, Klavs F. Jensen, Ulrich H. Von Andrian
  • Publication number: 20220054719
    Abstract: Drug-eluting devices and methods for the treatment of tumors of the pancreas, biliary system, gallbladder, liver, small bowel, or colon, are provided. Methods include deploying a drug-eluting device having a film which includes a mixture of a degradable polymer and a chemotherapeutic drug, wherein the film has a thickness from about 2 ?m to about 1000 ?m, into a tissue site and releasing a therapeutically effective amount of the chemotherapeutic drug from the film to treat the tumor, wherein the release of the therapeutically effective amount of the drug from the film is controlled by in vivo degradation of the polymer at the tissue site.
    Type: Application
    Filed: November 8, 2021
    Publication date: February 24, 2022
    Inventors: Laura Indolfi, Elazer R. Edelman, Robert S. Langer, Jeffrey W. Clark, David T. Ting, Cristina Rosa Annamaria Ferrone, Matteo Ligorio
  • Publication number: 20220054642
    Abstract: The modification of biomolecules, small molecules, and other agents of via conjugation of excipients, tags, or labels is of great importance. For example, the modification of therapeutic agents can confer improved stability, solubility, duration of action, or pharmacological properties. Supramolecular chemistry utilizes specific, directional, reversible, non-covalent molecular recognition motifs in order to achieve organization of molecules, and can be used to complex tags to agents of interest (e.g., insulin, glucagon, antibodies). The present invention provides useful supramolecular complexes wherein an agent of interest is specifically bound to a host via non-covalent interactions, and wherein the host is conjugated to a tag. The present invention also provides methods and compounds useful in preparing supramolecular complexes, and methods of treating diseases using the supramolecular complexes.
    Type: Application
    Filed: November 2, 2021
    Publication date: February 24, 2022
    Applicant: Massachusetts Institute of Technology
    Inventors: Matthew J. Webber, Eric Andrew Appel, Robert S. Langer, Daniel Griffith Anderson
  • Patent number: 11254781
    Abstract: Among other things, the present disclosure provides compositions and methods for an elastomeric cross-linked polyester material. Such an elastomeric cross-linked polyester material, in some embodiments, comprises a plurality of polymeric units of the general formula (-A-B-)p, wherein p is an integer greater than 1; and a plurality of urethane cross-links each of which covalently links two polymeric units to one another, which two linked polymeric unit each had at least one free hydroxyl or amino group prior to formation of the crosslink.
    Type: Grant
    Filed: February 25, 2021
    Date of Patent: February 22, 2022
    Assignees: Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc., Biocant-Center of Innovation and Biotechnology
    Inventors: Robert S. Langer, Jeffrey M. Karp, Maria Jose Maio Nunes-Pereira, Ben Ouyang, Lino da Silva Ferreira, Debanjan Sarkar
  • Patent number: 11246829
    Abstract: Residence structures, systems, and related methods are generally provided. Certain embodiments comprise administering (e.g., orally) a residence structure to a subject (e.g., a patient) such that the residence structure is retained at a location internal to the subject for a particular amount of time (e.g., at least about 24 hours) before being released. The residence structure may be, in some cases, a gastric residence structure. In some embodiments, the structures and systems described herein comprise one or more materials configured for high levels of active substances (e.g., a therapeutic agent) loading, high active substance and/or structure stability in acidic environments, mechanical flexibility and strength in an internal orifice (e.g., gastric cavity), easy passage through the GI tract until delivery to at a desired internal orifice (e.g., gastric cavity), and/or rapid dissolution/degradation in a physiological environment (e.g., intestinal environment) and/or in response to a chemical stimulant (e.
    Type: Grant
    Filed: June 11, 2020
    Date of Patent: February 15, 2022
    Assignees: Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc.
    Inventors: Andrew Bellinger, Shiyi Zhang, Carlo Giovanni Traverso, Robert S. Langer, Stacy Mo, Tyler Grant, Mousa Jafari, Dean Liang Glettig, Angela DiCiccio, Lowell L. Wood, Jr., Philip A. Eckhoff
  • Publication number: 20220031913
    Abstract: Covalently modified alginate polymers, possessing enhanced biocompatibility and tailored physiochemical properties, as well as methods of making and use thereof, are disclosed herein. The covalently modified alginates are useful as a matrix for coating of any material where reduced fibrosis is desired, such as encapsulated cells for transplantation and medical devices implanted or used in the body.
    Type: Application
    Filed: July 15, 2021
    Publication date: February 3, 2022
    Inventors: Arturo Vegas, Joshua C. Doloff, Omid Veiseh, Minglin Ma, Robert S. Langer, Daniel G. Anderson
  • Publication number: 20220031630
    Abstract: Disclosed are pharmaceutical compositions formulated for delivery to the brain of a subject. The compositions include a plurality of nanoparticles (NPs) containing a brain therapeutic agent, poly(lactic-co-glycolic acid) (PLGA), and a pharmaceutically acceptable excipient selected from the group consisting of a surfactant, peptide, and combinations thereof. Also disclosed are methods of their use.
    Type: Application
    Filed: September 13, 2019
    Publication date: February 3, 2022
    Inventors: Jeffrey M. KARP, Wen LI, Nitin JOSHI, Robert S. LANGER, Rebekah MANNIX, Jianhua QIU, Sezin ADAY
  • Publication number: 20220023602
    Abstract: Systems and methods related to reconfigurable medical devices are described. In some embodiments, a reconfigurable medical device may include a central core and a plurality of arms. The arms may be rotatably coupled to the central core such that the plurality of arms may rotate outwards away from the central core to selectively reconfigure the reconfigurable device between a retracted configuration and an expanded configuration. In an initial state, the arms may be biased outwards away from the central core into the expanded configuration. When the reconfigurable device is exposed to a temperature greater than a threshold temperature, the arms may be biased towards the central core into the retracted configuration. In some embodiments, a reconfigurable medical device may include therapeutic compound-loaded needles coupled to distal portions of the arms.
    Type: Application
    Filed: November 15, 2019
    Publication date: January 27, 2022
    Applicants: Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc.
    Inventors: Robert S. Langer, Carlo Giovanni Traverso, Sahab Babaee, Simo Pajovic, Ester Caffarel Salvador
  • Publication number: 20220008701
    Abstract: Systems and methods related to reconfigurable medical devices are described. In some embodiments, a reconfigurable medical device may include a central core and a plurality of arms. The arms may be rotatably coupled to the central core such that the plurality of arms may rotate outwards away from the central core to selectively reconfigure the reconfigurable device between a retracted configuration and an expanded configuration. In an initial state, the arms may be biased outwards away from the central core into the expanded configuration. When the reconfigurable device is exposed to a temperature greater than a threshold temperature, the arms may be biased towards the central core into the retracted configuration. In some embodiments, a reconfigurable medical device may include therapeutic compound-loaded needles coupled to distal portions of the arms.
    Type: Application
    Filed: November 15, 2019
    Publication date: January 13, 2022
    Applicants: Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc.
    Inventors: Robert S. Langer, Carlo Giovanni Traverso, Ester Caffarel Salvador, Sahab Babaee, Simo Pajovic
  • Publication number: 20220001027
    Abstract: A method for the systemic delivery of an enzyme to treat lysosomal storage disease of a subject is provided by creating genetically modified skin cells via topical introduction of a genetically engineered virus which delivers a nucleic acid encoding an enzyme or factor for expression by the skin cells, wherein the expressed enzyme or factor is secreted by the skin cells and is introduced into the circulatory system of the subject.
    Type: Application
    Filed: November 14, 2019
    Publication date: January 6, 2022
    Inventors: Denitsa M. Milanova, George M. Church, Isaac Han, James Gorman, Robert S. Langer, Anna I. Mandinova, Kristina Aleksandrova Todorova
  • Publication number: 20220001159
    Abstract: Actuating components and related methods are generally disclosed. Certain embodiments comprise an actuating component associated with a plurality of microneedles (e.g., for administering a therapeutic agent to a subject). In some embodiments, the actuating component may be administered to a subject such that the plurality of microneedles are deployed at a location internal to the subject (e.g., in the gastrointestinal tract). The actuating component may be contained within, in some embodiments, a capsule (e.g., for oral administration to a subject). In some embodiments, the actuating component has a pre-deployment configuration in which the plurality of microneedles have a first orientation and a deployed configuration in which the plurality of microneedles have a second orientation, different than the first orientation.
    Type: Application
    Filed: May 17, 2019
    Publication date: January 6, 2022
    Applicants: Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc.
    Inventors: Robert S. Langer, Carlo Giovanni Traverso, Daniel Minahan, Alex G. Abramson, Ester Caffarel Salvador, Vance Soares
  • Patent number: 11207272
    Abstract: Self-righting articles, such as self-righting capsules for administration to a subject, are generally provided. In some embodiments, the self-righting article may be configured such that the article may orient itself relative to a surface (e.g., a surface of a tissue of a subject). The self-righting articles described herein may comprise one or more tissue engaging surfaces configured to engage (e.g., interface with, inject into, anchor) with a surface (e.g., a surface of a tissue of a subject). In some embodiments, the self-righting article may have a particular shape and/or distribution of density (or mass) which, for example, enables the self-righting behavior of the article. In some embodiments, the self-righting article may comprise a tissue interfacing component and/or a pharmaceutical agent (e.g., for delivery of the active pharmaceutical agent to a location internal of the subject).
    Type: Grant
    Filed: May 17, 2018
    Date of Patent: December 28, 2021
    Assignees: Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc.
    Inventors: Carlo Giovanni Traverso, Alex G. Abramson, Ester Caffarel Salvador, Niclas Roxhed, Minsoo Khang, Taylor Bensel, David Dellal, Robert S. Langer
  • Patent number: 11202903
    Abstract: Self-righting articles, such as self-righting capsules for administration to a subject, are generally provided. In some embodiments, the self-righting article may be configured such that the article may orient itself relative to a surface (e.g., a surface of a tissue of a subject). The self-righting articles described herein may comprise one or more tissue engaging surfaces configured to engage (e.g., interface with, inject into, anchor) with a surface (e.g., a surface of a tissue of a subject). In some embodiments, the self-righting article may have a particular shape and/or distribution of density (or mass) which, for example, enables the self-righting behavior of the article. In certain embodiments, the self-righting article a tissue-interfacing components. In some embodiments, each tissue-interfacing component may comprise an electrically-conductive portion configured for electrical communication with tissue and an insulative portion configured to not be in electrical communication with tissue.
    Type: Grant
    Filed: May 17, 2019
    Date of Patent: December 21, 2021
    Assignees: Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc.
    Inventors: Robert S. Langer, Carlo Giovanni Traverso, Alex G. Abramson, David Dellal
  • Patent number: 11191841
    Abstract: The modification of biomolecules, small molecules, and other agents of via conjugation of excipients, tags, or labels is of great importance. For example, the modification of therapeutic agents can confer improved stability, solubility, duration of action, or pharmacological properties. Supramolecular chemistry utilizes specific, directional, reversible, non-covalent molecular recognition motifs in order to achieve organization of molecules, and can be used to complex tags to agents of interest (e.g., insulin, glucagon, antibodies). The present invention provides useful supramolecular complexes wherein an agent of interest is specifically bound to a host via non-covalent interactions, and wherein the host is conjugated to a tag. The present invention also provides methods and compounds useful in preparing supramolecular complexes, and methods of treating diseases using the supramolecular complexes.
    Type: Grant
    Filed: October 6, 2016
    Date of Patent: December 7, 2021
    Assignee: Massachusetts Institute of Technology
    Inventors: Matthew J. Webber, Eric Andrew Appel, Robert S. Langer, Daniel Griffith Anderson
  • Publication number: 20210369633
    Abstract: Network materials which exhibit both shear thinning and self-healing properties are disclosed. The networks contain particles and gel-forming compounds. The networks are useful for a variety of biomedical uses, including drug delivery.
    Type: Application
    Filed: June 8, 2021
    Publication date: December 2, 2021
    Inventors: Eric A. Appel, Mark W. Tibbitt, Robert S. Langer