Patents by Inventor Robin A. Gardiner

Robin A. Gardiner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11027974
    Abstract: The present invention generally relates to the field of gas and liquid phase desiccation. In particular, the present invention relates to methods for removing moisture (and hence oxygen precursors) from hydrazine, thereby providing a high purity source gas suitable for use in vapor deposition processes, such as but not limited to, chemical vapor deposition (CVD) or an atomic layer deposition (ALD).
    Type: Grant
    Filed: November 8, 2017
    Date of Patent: June 8, 2021
    Assignee: Matheson Tri-Gas, Inc.
    Inventors: Hideharu Shimizu, Mark Raynor, Daniel Tempel, Robin Gardiner, Daniel Alvarez, Jr.
  • Publication number: 20180127272
    Abstract: The present invention generally relates to the field of gas and liquid phase desiccation. In particular, the present invention relates to methods for removing moisture (and hence oxygen precursors) from hydrazine, thereby providing a high purity source gas suitable for use in vapor deposition processes, such as but not limited to, chemical vapor deposition (CVD) or an atomic layer deposition (ALD).
    Type: Application
    Filed: November 8, 2017
    Publication date: May 10, 2018
    Applicant: Matheson Tri-Gas, Inc.
    Inventors: Hideharu Shimizu, Mark Raynor, Daniel Tempel, Robin Gardiner, Daniel Alvarez, JR.
  • Publication number: 20140046606
    Abstract: There is provided a method for monitoring fluid flow, the method including: acquiring a pulse-echo signal from each of a plurality of spatially adjacent regions; for each of the pulse echo signals, forming a velocity spectrum; combining the plurality of velocity spectra into a composite data set which contains both spatial data and velocity data; and displaying the composite data set so as to present at least one aspect of the velocity data with at least one aspect of the spatial data. By combining both spatial and spectral velocity data into a composite data set and displaying aspects of the spatial data with aspects of the velocity data, the clinician can easily gauge in a quantitative or semi-quantitative way, both the size and velocities of fluid flows. In particular, the technique is useful for assessing valvular regurgitation jets in cardiac blood flows.
    Type: Application
    Filed: March 23, 2012
    Publication date: February 13, 2014
    Applicant: NORWEIGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY (NTNU)
    Inventor: Stephen Robin GARDINER
  • Patent number: 8299286
    Abstract: A ?-diketonate alkoxide metal compound and a source reagent composition are provided. The ?-diketonate alkoxide metal compound may include a metal M selected from Mg, Ca, Sr, Ba, Sc, Y, La, Ce, Ti, Zr, Hf, Pr, V, Nb, Ta, Nd, Cr, W, Pm, Mn, Re, Sm, Fe, Ru, Eu, Co, Rh, Ir, Gd, Ni, Tb, Cu, Dy, Ho, Al, Tl, Er, Sn, Pb, Tm, Bi, Lu, Th, Pd, Pt, Ga, In, Au, Ag, Li, Na, K, Rb, Cs, Mo, and Yb. The metal may be complexed to at least one alkoxide ligand and one ?-diketonate ligand.
    Type: Grant
    Filed: December 4, 2007
    Date of Patent: October 30, 2012
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Robin A. Gardiner, Thomas H. Baum, Douglas Cameron Gordon, Connie L. Gordon, legal representative, Timothy E. Glassman, Sofia Pombrik, Brian A. Vaartstra, Peter S. Kirlin
  • Publication number: 20110171382
    Abstract: A metalorganic complex composition comprising a metalorganic complex selected from the group consisting of: metalorganic complexes comprising one or more metal central atoms coordinated to one or more monodentate or multidentate organic ligands, and complexed with one or more complexing monodentate or multidentate ligands containing one or more atoms independently selected from the group consisting of atoms of the elements C, N, H, S, O and F; wherein when the number of metal atoms is one and concurrently the number of complexing monodentate or multidentate ligands is one, then the complexing monodentate or multidentate ligand of the metalorganic complex is selected from the group consisting of beta-ketoiminates, beta-diiminates, C2-C10 alkenyl, C2-C15 cycloalkenyl and C6-C10 aryl.
    Type: Application
    Filed: December 4, 2007
    Publication date: July 14, 2011
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: Robin A. Gardiner, Peter S. Kirlin, Thomas H. Baum, Douglas Gordon, Connie L. Gordon, Timothy E. Glassman, Sophia Pombrik, Brian A. Vaarstra
  • Patent number: 7323581
    Abstract: A metalorganic complex composition comprising a metalorganic complex selected from the group consisting of: metalorganic complexes comprising one or more metal central atoms coordinated to one or more monodentate or multidentate organic ligands, and complexed with one or more complexing monodentate or multidentate ligands containing one or more atoms independently selected from the group consisting of atoms of the elements C, N, H, S, O and F; wherein when the number of metal atoms is one and concurrently the number of complexing monodentate or multidentate ligands is one, then the complexing monodentate or multidentate ligand of the metalorganic complex is selected from the group consisting of beta-ketoiminates, beta-diiminates, C2-C10 alkenyl, C2-C15 cycloalkenyl and C6-C10 aryl.
    Type: Grant
    Filed: August 28, 2000
    Date of Patent: January 29, 2008
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Robin A. Gardiner, Thomas H. Baum, Connie L. Gordon, legal representative, Timothy E. Glassman, Sophia Pombrik, Brian A. Vaastra, Peter S. Kirlin, Douglas Cameron Gordon, deceased
  • Patent number: 6126996
    Abstract: A metalorganic complex of the formula:MA.sub.Y Xwherein:M is a y-valent metal;A is a monodentate or multidentate organic ligand coordinated to M which allows complexing of MAY with X;y is an integer having a value of 2, 3 or 4;each of the A ligands may be the same or different; andX is a monodentate or multidentate ligand coordinated to M and containing one or more atoms independently selected from the group consisting of atoms of the elements C, N, H, S, O and F.The metal M may be selected from the group consisting of Cu, Ba, Sr, La, Nd, Ce, Pr, Sm, Eu, Th, Gd, Th, Dy, Ho, Er, Tm, Yb, Lu, Bi, Tl, Y, Pb, Ni, Pd, Pt, Al, Ga, In, Ag, Au, Co, Rh, Ir, Fe, Ru, Sn, Li, Na, K, Rb, Cs, Ca, Mg, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W. A may be selected from the group consisting of .beta.-diketonates and their sulfur and nitrogen analogs, .beta.-ketoesters and their sulfur and nitrogen analogs, cyclopentadienyls, alkyls, perfluoroalkyls, alkoxides, perfluoroalkoxides, and Schiff bases.
    Type: Grant
    Filed: December 15, 1997
    Date of Patent: October 3, 2000
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Peter S. Kirlin, Duncan W. Brown, Thomas W. Baum, Brian A. Vaarstra, Robin A. Gardiner
  • Patent number: 6110529
    Abstract: A method of forming on a substrate a metal film, comprising depositing said metal film on said substrate via chemical vapor deposition from a metalorganic complex of the formula:MA.sub.Y Xwherein:M is a y-valent metal;A is a monodentate or multidentate organic ligand coordinated to M which allows complexing of MA.sub.y with X;y is an integer having a value of 2, 3 or 4; each of the A ligands may be the same or different; andX is a monodentate or multidentate ligand coordinated to M and containing one or more atoms independently selected from the group consisting of atoms of the elements C, N, H, S, O and F.The metal M may be selected from the group consisting of Cu, Ba, Sr, La, Nd, Ce, Pr, Sm, Eu, Th, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Bi, Tl, Y, Pb, Ni, Pd, Pt, Al, Ga, In, Ag, Au, Co, Rh, Ir, Fe, Ru, Sn, Li, Na, K, Rb, Cs, Ca, Mg, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W. A may be selected from the group consisting of .beta.-diketonates, .beta.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: August 29, 2000
    Inventors: Robin A. Gardiner, Peter S. Kirlin, Thomas H. Baum, Douglas Gordon, Timothy E. Glassman, Sofia Pombrik, Brian A. Vaartstra
  • Patent number: 5919522
    Abstract: A method of forming a thin film of BaSrTiO.sub.3 on a substrate in a chemical vapor deposition zone, with transport of a metal precursor composition for the metal-containing film to the chemical vapor deposition zone via a liquid delivery apparatus including a vaporizer. A liquid precursor material is supplied to the liquid delivery apparatus for vaporization thereof to yield the vapor-phase metal precursor composition. The vapor-phase metal precursor composition is flowed to the chemical vapor deposition zone for deposition of metal on the substrate to form the metal-containing film. The liquid precursor material includes a metalorganic polyamine complex, the use of which permits the achievement of sustained operation of the liquid delivery chemical vapor deposition process between maintenance events, due to the low decomposition levels achieved in the vaporization of the polyamine-complexed precursor.
    Type: Grant
    Filed: April 8, 1997
    Date of Patent: July 6, 1999
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Thomas H. Baum, Gregory T. Stauf, Peter S. Kirlin, Duncan W. Brown, Robin A. Gardiner, Gautam Bhandari, Brian A. Vaartstra
  • Patent number: 5840897
    Abstract: A metalorganic complex of the formula:MA.sub.y Xwherein:M is a y-valent metal;A is a monodentate or multidentate organic ligand coordinated to M which allows complexing of MA.sub.y with X;y is an integer having a value of 2, 3 or 4; each of the A ligands may be the same or different; andX is a monodentate or multidentate ligand coordinated to M and containing one or more atoms independently selected from the group consisting of atoms of the elements C, N, H, S, O and F.The metal M may be selected from the group consisting of Cu, Ba, Sr, La, Nd, Ce, Pr, Sm, Eu, Th, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Bi, Tl, Y, Pb, Ni, Pd, Pt, Al, Ga, In, Ag, Au, Co, Rh, Ir, Fe, Ru, Sn, Li, Na, K, Rb, Cs, Ca, Mg, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W. A may be selected from the group consisting of .beta.-diketonates and their sulfur and nitrogen analogs, .beta.-ketoesters and their sulfur and nitrogen analogs, cyclopentadienyls, alkyls, perfluoroalkyls, alkoxides, perfluoroalkoxides, and Schiff bases.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: November 24, 1998
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Peter S. Kirlin, Duncan W. Brown, Thomas H. Baum, Brian A. Vaarstra, Robin A. Gardiner
  • Patent number: 5820664
    Abstract: A metal source reagent liquid solution, comprising: (i) at least one metal coordination complex including a metal to which is coordinatively bound at least one ligand in a stable complex, wherein the ligand is selected from the group consisting of: .beta.-diketonates, .beta.-ketoiminates, .beta.-diiminates, C.sub.1 -C.sub.8 alkyl, C.sub.2 -C.sub.10 alkenyl, C.sub.2 -C.sub.15 cycloalkenyl, C.sub.6 -C.sub.10 aryl, C.sub.1 -C.sub.8 alkoxy, and fluorinated derivatives thereof; and (ii) a solvent for the metal coordination complex. The solutions are usefully employed for chemical vapor deposition of metals from the metal coordination complexes, such as Mg, Ca, Sr, Ba, Sc, Y, La, Ce, Ti, Zr, Hf, Pr, V, Nb, Ta, Nd, Cr, W, Pm, Mn, Re, Sm, Fe, Ru, Eu, Co, Rh, Ir, Gd, Ni, Tb, Cu, Dy, Ho, Al, Tl, Er, Sn, Pb, Tm, Bi, and/or Yb. The solvent may comprise glyme solvents, alkanols, organic ethers, aliphatic hydrocarbons, and/or aromatic hydrocarbons.
    Type: Grant
    Filed: March 31, 1995
    Date of Patent: October 13, 1998
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Robin A. Gardiner, Peter S. Kirlin, Thomas H. Baum, Douglas Gordon, Timothy E. Glassman, Sofia Pombrik, Brian A. Vaartstra
  • Patent number: 5711816
    Abstract: A process and apparatus for delivering an involatile reagent in gaseous form, wherein an involatile reagent source liquid is flash vaporized on a vaporization matrix structure at elevated temperature. A carrier gas may be flowed past the flash vaporization matrix structure to yield a carrier gas mixture containing the flash vaporized source reagent. The matrix structure preferably has a high surface-to-volume ratio, and may suitably comprise a foraminous matrix element such as screen mesh onto which the reagent source liquid is distributed for flash vaporization. The invention is particularly useful for delivery of Group II reagents and compounds and complexes of early transition metals such as zirconium and hafnium, and may be usefully employed with Group II beta-diketonate source layers, e.g.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: January 27, 1998
    Assignee: Advanced Technolgy Materials, Inc.
    Inventors: Peter S. Kirlin, Robin L. Binder, Robin A. Gardiner, Peter Van Buskirk, Gregory Stauf, Jiming Zhang
  • Patent number: 5705443
    Abstract: A plasma-assisted dry etching process for etching of a metal containing material layer on a substrate to remove the metal containing material from the substrate, comprising (i) plasma etching the metal containing material and, (ii) contemporaneously with said plasma etching, contacting the metal containing material with an etch enhancing reactant in a sufficient amount and at a sufficient rate to enhance the etching removal of the metal containing material, in relation to a corresponding plasma etching of the metal containing material layer on the substrate in the absence of the etch enhancing reactant metal material being contacted with the etch enhancing reactant.
    Type: Grant
    Filed: May 30, 1995
    Date of Patent: January 6, 1998
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Gregory Stauf, Robin A. Gardiner, Peter S. Kirlin, Peter C. Van Buskirk
  • Patent number: 5536323
    Abstract: A process and apparatus for delivering an involatile reagent in gaseous form, wherein an involatile reagent source liquid is flash vaporized on a vaporization matrix structure at elevated temperature. A carrier gas may be flowed past the flash vaporzation matrix structure to yield a carrier gas mixture containing the flash vaporized source reagent. The matrix structure preferably has a high surface-to-volume ratio, and may sutiably comprise a foraminous matrix element such as screen mesh onto which the reagent source liquid is distributed for flash vaporization. The invention is particularly useful for delivery of Group II reagents and compounds and complexes of early transition metals such as zirconium and hafnium, and may be usefully employed with Group II beta-diketonate source layers, e.g.
    Type: Grant
    Filed: July 25, 1994
    Date of Patent: July 16, 1996
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Peter S. Kirlin, Robin L. Binder, Robin A. Gardiner, Peter V. Buskirk, Jiming Zhang, Gregory Stauf
  • Patent number: 5453494
    Abstract: Metal organic chemical vapor deposition (MOCVD) source reagents useful for formation of metal-containing films, such as thin film copper oxide high temperature superconductor (HTSC) materials. The source reagents have the formula MAyX wherein: M is a metal such as Cu, Ba, Sr, La, Nd, Ce, Pr, Sm, Eu, Th, Gd, Tb, Dy, Ho, Er, Tm Yb, Lu Bi, Tl, Y or Pb; A is a monodentate or multidentate organic ligand; y is 2 or 3; MAy is a stable sub-complex at STP conditions; and X is a monodentate or multidentate ligand coordinated to M and containing one or more atoms independently selected from the group consisting of atoms of the elements C, N, H, S, O, and F. The ligand A may for example be selected from beta-diketonates, cyclopentadienyls, alkyls, perfluoroalkyls, alkoxides, perfluoroalkoxides, and Schiff bases.
    Type: Grant
    Filed: January 18, 1994
    Date of Patent: September 26, 1995
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Peter S. Kirlin, Duncan W. Brown, Robin A. Gardiner
  • Patent number: 5431957
    Abstract: A means and method for protecting the moving parts of a pump that is used to pump air- or moisture-sensitive liquids, comprising blanketing the wetted parts of the pump with an inert medium and/or admixing the process liquid with a low vapor pressure liquid component effective for inhibiting corrosion or particulate formation. In another aspect, the invention relates to an apparatus for protecting the wetted, moving parts of pumps used to pump air- or moisture-sensitive liquids. The apparatus provides a mantle within which an inert medium is flowed around the moving, wetted pump parts to continually purge them of any air or moisture.
    Type: Grant
    Filed: August 15, 1994
    Date of Patent: July 11, 1995
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Robin A. Gardiner, Peter S. Kirlin
  • Patent number: 5362328
    Abstract: A means and method for protecting a source reagent vaporizer structure from the harmful effects of solid build-up occurring during its use in chemical vapor deposition (CVD). Vaporizer structures may be used to provide a means of transferring relatively involatile source reagents or reagent solutions into CVD reactors and often are high surface area, highly efficient heat transfer structures. When vaporizers are used in CVD, often some premature decomposition of the source reagent occurs on the vaporizer element as well as some oxidative decomposition to produce solid products which cause clogging and inefficient vaporization. The invention provides both apparatus and method to periodically flush clean such vaporizer elements to increase their consistency, reliability, and average time between servicings.
    Type: Grant
    Filed: January 7, 1994
    Date of Patent: November 8, 1994
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Robin A. Gardiner, Peter Van Buskirk, Peter S. Kirlin
  • Patent number: 5337651
    Abstract: A means and method for protecting the moving parts of a pump that is used to pump air- or moisture-sensitive liquids, comprising blanketing the wetted parts of the pump with an inert medium and/or admixing the process liquid with a low vapor pressure liquid component effective for inhibiting corrosion or particulate formation. In another aspect, the invention relates to an apparatus for protecting the wetted, moving parts of pumps used to pump air- or moisture-sensitive liquids. The apparatus provides a mantle within which an inert medium is flowed around the moving, wetted pump parts to continually purge them of any air or moisture.
    Type: Grant
    Filed: March 18, 1993
    Date of Patent: August 16, 1994
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Robin A. Gardiner, Peter S. Kirlin
  • Patent number: 5280012
    Abstract: This invention is directed to the metal organic chemical vapor deposition (MOCVD) formation of copper oxide superconductor materials. Various source reagents of Group II elements suitable for high temperature superconductor (HTSC) material formation are described, including beta-diketonates, cyclopentadienyls, alkyls, perfluoroalkyls, alkoxides, perfluoroalkoxides, and Schiff bases, as well as complexes of such Group II compounds, utilizing monodentate or multidentate ligands to provide additional coordination to the Group IIA atom, so that the resulting complex is of enhanced volatility characteristics, and enhanced suitability for MOCVD applications. Also disclosed are methods of synthesizing such compounds and complexes, including a method of making Group II metal beta-diketonate compounds having enhanced thermal stability characteristics.
    Type: Grant
    Filed: July 22, 1992
    Date of Patent: January 18, 1994
    Assignee: Advanced Technology Materials Inc.
    Inventors: Peter S. Kirlin, Duncan W. Brown, Robin A. Gardiner
  • Patent number: 5225561
    Abstract: Metal organic chemical vapor deposition (MOCVD) formation of copper oxide superconductor materials. Various source reagents of Group II elements suitable for high temperature superconductor (HTSC) material formation are described, including beta-diketonates, cyclopentadienyls, alkyls, perfluoroalkyls, alkoxides, perfluoroalkoxides, and Schiff bases, as well as complexes of such Group II compounds, utilizing monodentate or multidentate ligands to provide additional coordination to the Group IIA atom, so that the resulting complex is of enhanced volatility characteristics, and enhanced suitability for MOCVD applications. Also disclosed are methods of synthesizing such compounds and complexes, including a method of making Group II metal beta-diketonate compounds having enhanced thermal stability characteristics. Further disclosed are a vertical inverted reactor for chemical vapor deposition, and various methods of processing applied metal oxide films for enhanced HTSC character.
    Type: Grant
    Filed: September 12, 1990
    Date of Patent: July 6, 1993
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Peter S. Kirlin, Duncan W. Brown, Robin A. Gardiner