Patents by Inventor Roby Bearden, Jr.

Roby Bearden, Jr. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10035959
    Abstract: Systems and methods are provided for slurry hydroconversion of a heavy oil feed, such as an atmospheric or vacuum resid. The systems and methods allow for slurry hydroconversion using catalysts with enhanced activity and/or catalysts that can be recycled as a side product from a complementary refinery process.
    Type: Grant
    Filed: June 19, 2014
    Date of Patent: July 31, 2018
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Ramanathan Sundararaman, Thomas Francis Degnan, Jr., Rustom Merwan Billimoria, Natalie Ann Fassbender, Manuel A. Francisco, Anjaneya Sarma Kovvali, Randolph J. Smiley, John Peter Greeley, William Ernest Lewis, Roby Bearden, Jr.
  • Patent number: 9849446
    Abstract: Systems and methods are provided for slurry hydroconversion of a heavy oil feedstock, such as an atmospheric or vacuum resid, in the presence of an enhanced or promoted slurry hydroconversion catalyst system. The slurry hydroconversion catalyst system can be formed from a) a Group VIII non-noble metal catalyst precursor/concentrate (such as an iron-based catalyst precursor/concentrate) and b) a Group VI metal catalyst precursor/concentrate (such as a molybdenum-based catalyst precursor/concentrate) and/or a Group VI metal sulfided catalyst.
    Type: Grant
    Filed: August 19, 2016
    Date of Patent: December 26, 2017
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: John P. Greeley, Paul Podsiadlo, William Ernest Lewis, Roby Bearden, Jr., Amitava Sarkar, Mainak Ghosh, Ramanathan Sundararaman, Thomas F. Degnan, Jr., Manuel A. Francisco
  • Publication number: 20140374314
    Abstract: Systems and methods are provided for slurry hydroconversion of a heavy oil feed, such as an atmospheric or vacuum resid. The systems and methods allow for slurry hydroconversion using catalysts with enhanced activity and/or catalysts that can be recycled as a side product from a complementary refinery process.
    Type: Application
    Filed: June 19, 2014
    Publication date: December 25, 2014
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Ramanathan SUNDARARAMAN, Thomas Francis DEGNAN, JR., Rustom Merwan BILLIMORIA, Natalie Ann FASSBENDER, Manuel A. FRANCISCO, Anjaneya Sarma KOVVALI, Randolph J. SMILEY, John Peter GREELEY, William Ernest LEWIS, Roby BEARDEN, JR.
  • Patent number: 8894845
    Abstract: Hydrocarbon feedstreams are desulfurized using an alkali metal reagent, optionally in the presence of hydrogen. Improved control over reaction conditions can be achieved in part by controlling the particle size of the alkali metal salt and by using multiple desulfurization reactors. The processes herein allow a simple and effective method for removing the majority of coke formed in the alkali metal reagent reactions with the hydrocarbon feedstreams. This makes it cost effective to run such processes at higher severities (which result in higher coke production) thereby resulting in increased amounts of valuable converted hydrocarbon product yields. The process improvements herein may also be used to increase total throughput through a unit due to the ability to effectively manage higher coke content in the reaction products.
    Type: Grant
    Filed: December 4, 2012
    Date of Patent: November 25, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Walter David Vann, Daniel Paul Leta, Jonathan Martin McConnachie, Richard Alan Demmin, Douglas Wayne Hissong, William C. Baird, Jr., Roby Bearden, Jr., James Ronald Bielenberg, Howard Freund, Chris Aaron Wright, Michael Francis Raterman, James Ronald Rigby, Brandon Thomas Stone
  • Patent number: 8778173
    Abstract: The present invention relates to a process for desulfurizing heavy oil feedstreams with alkali metal compounds and improving the compatibility of the to stream components in either the feed stream, an intermediate product stream, and/or the reaction product stream in the desulfurization process. The present invention utilizes a high stability aromatic-containing stream that is preferably added to the heavy oil prior to reaction with the alkali metal compounds. The resulting stream resists precipitation of reaction solids in the desulfurization reactors. Even more preferably, the desulfurization system employs at least two desulfurization reactors in series flow wherein the high stability aromatic-containing stream is contacted with the reaction product from the first reactor prior to the second reactor, wherein the first reactor can be operated at a higher severity than without the use of the high stability aromatic-containing component stream.
    Type: Grant
    Filed: November 3, 2009
    Date of Patent: July 15, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Michael F. Raterman, Daniel P. Leta, Walter D. Vann, Roby Bearden, Jr.
  • Patent number: 8696890
    Abstract: Hydrocarbon feedstreams are desulfurized using an alkali metal reagent, optionally in the presence of hydrogen. Improved control over reaction conditions can be achieved in part by controlling the particle size of the alkali metal salt and by using multiple desulfurization reactors. After separation of the spent alkali metal reagent, the resulting product can have suitable characteristics for pipeline transport and/or further refinery processing.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: April 15, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Jorge L. Soto, Michael Raterman, Daniel P. Leta, Walter D. Vann, Lu Han, Jonathan M. McConnachie, James R. Bielenberg, William C. Baird, Jr., Roby Bearden, Jr.
  • Patent number: 8404106
    Abstract: After desulfurizing a hydrocarbon feedstream using an alkali metal reagent, the hydrocarbon feedstream can include particles of spent alkali metal salts. The spent alkali metal salts can be separated from the hydrocarbon feedstream and regenerated to form an alkali metal reagent, such as a alkali hydroxide or alkali sulfide. The regeneration process can pass through an intermediate stage of forming an alkali carbonate by successive reactions with carbon dioxide and calcium oxide. The calcium oxide can also be regenerated.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: March 26, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Jorge L. Soto, Daniel P. Leta, Lu Han, Walter D. Vann, Mark A. Greaney, James R. Bielenberg, Paul D. Oldenburg, Jonathan M. McConnachie, Leo D. Brown, William C. Baird, Jr., Roby Bearden, Jr.
  • Patent number: 7981276
    Abstract: The present invention relates to a process for removing sulfur from sulfur-containing hydrocarbon streams utilizing a multi-ring aromatic hydrocarbon complex containing an alkali metal ion. Preferably, the sulfur-containing hydrocarbon stream is comprised of high molecular weight hydrocarbons, such as a low API gravity, high viscosity crude, tar sands bitumen, an oil derived from shale, or heavy refinery intermediate stocks such as atmospheric resids or vacuum resids which are typically difficult to desulfurize and contain relatively high amounts of sulfur. However, intermediate refinery streams and refinery product streams may also be treated by the process of the current invention to achieve very low sulfur concentrations to meet environmental specification for fuels sulfur content.
    Type: Grant
    Filed: November 30, 2007
    Date of Patent: July 19, 2011
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Michael Siskin, Ronald D Myers, Roby Bearden, Jr., Thomas B. Rauchfuss
  • Publication number: 20110147274
    Abstract: After desulfurizing a hydrocarbon feedstream using an alkali metal reagent, the hydrocarbon feedstream can include particles of spent alkali metal salts. The spent alkali metal salts can be separated from the hydrocarbon feedstream and regenerated to form an alkali metal reagent, such as a alkali hydroxide or alkali sulfide. The regeneration process can pass through an intermediate stage of forming an alkali carbonate by successive reactions with carbon dioxide and calcium oxide. The calcium oxide can also be regenerated.
    Type: Application
    Filed: December 14, 2010
    Publication date: June 23, 2011
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Jorge L. Soto, Daniel P. Leta, Lu Han, Walter D. Vann, Mark A. Greaney, James R. Bielenberg, Paul D. Oldenburg, Jonathan M. McConnachie, Leo D. Brown, William C. Baird, JR., Roby Bearden, JR.
  • Publication number: 20110147273
    Abstract: Hydrocarbon feedstreams are desulfurized using an alkali metal reagent, optionally in the presence of hydrogen. Improved control over reaction conditions can be achieved in part by controlling the particle size of the alkali metal salt and by using multiple desulfurization reactors. After separation of the spent alkali metal reagent, the resulting product can have suitable characteristics for pipeline transport and/or further refinery processing.
    Type: Application
    Filed: December 14, 2010
    Publication date: June 23, 2011
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Jorge L. Soto, Michael Raterman, Daniel P. Leta, Walter D. Vann, Lu Han, Jonathan M. McConnachie, James R. Bielenberg, William C. Baird, JR., Roby Bearden, JR.
  • Patent number: 7862708
    Abstract: The present invention relates to a process for desulfurizing bitumen and other heavy oils such as low API gravity, high viscosity crudes, tar sands bitumen, or shale oils with alkali metal compounds under conditions to promote in-situ regeneration of the alkali metal compounds. The present invention employs the use of superheated water and hydrogen under conditions to improve the desulfurization and alkali metal hydroxide regeneration kinetics at sub-critical temperatures.
    Type: Grant
    Filed: October 14, 2008
    Date of Patent: January 4, 2011
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Michael Siskin, Rustom M. Billimoria, David W. Savage, Roby Bearden, Jr.
  • Publication number: 20100155298
    Abstract: The present invention relates to a process for desulfurizing heavy oil feedstreams with alkali metal compounds and improving the compatibility of the to stream components in either the feed stream, an intermediate product stream, and/or the reaction product stream in the desulfurization process. The present invention utilizes a high stability aromatic-containing stream that is preferably added to the heavy oil prior to reaction with the alkali metal compounds. The resulting stream resists precipitation of reaction solids in the desulfurization reactors. Even more preferably, the desulfurization system employs at least two desulfurization reactors in series flow wherein the high stability aromatic-containing stream is contacted with the reaction product from the first reactor prior to the second reactor, wherein the first reactor can be operated at a higher severity than without the use of the high stability aromatic-containing component stream.
    Type: Application
    Filed: November 3, 2009
    Publication date: June 24, 2010
    Inventors: Michael F. Raterman, Daniel P. Leta, Walter D. Vann, Roby Bearden, JR.
  • Publication number: 20090152168
    Abstract: The present invention relates to a process for desulfurizing bitumen and other heavy oils such as low API gravity, high viscosity crudes, tar sands bitumen, or shale oils with alkali metal compounds under conditions to promote in-situ regeneration of the alkali metal compounds. The present invention employs the use of superheated water and hydrogen under conditions to improve the desulfurization and alkali metal hydroxide regeneration kinetics at sub-critical temperatures.
    Type: Application
    Filed: October 14, 2008
    Publication date: June 18, 2009
    Inventors: Michael Siskin, Rustom M. Billimoria, David W. Savage, Roby Bearden, JR.
  • Patent number: 6712955
    Abstract: A slurry hydroprocessing process for upgrading a hydrocarbon feedstock containing nitrogen and sulfur using bulk multimetallic catalyst comprised of at least one Group VIII non-noble metal and at least two Group VIB metals wherein the ratio of Group VIB metal to Group VIII metal is about 10:1 to about 1:10.
    Type: Grant
    Filed: August 22, 2001
    Date of Patent: March 30, 2004
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Zhiguo Hou, Roby Bearden, Jr., Ferrughelli Thomas David, Sabato Miseo, Martin Leo Gorbaty, Stuart Leon Soled
  • Patent number: 6511937
    Abstract: The invention described herein is directed to (a) slurry hydroprocessing (SHP) of a feed under SHP conditions; (b) deasphalting, under deasphalting conditions the product obtained from said step (a) and recovering a solvent deasphalted oil and solvent deasphalted rock; (c) calcining said solvent deasphalted rock at a temperature of ≦about 1200° F. to produce an ash catalyst precursor; (d) recycling said ash catalyst precursor to said step (a).
    Type: Grant
    Filed: October 3, 2000
    Date of Patent: January 28, 2003
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Roby Bearden, Jr., Zhiguo Hou, Martin Leo Gorbaty, David Thomas Ferrughelli, Ronald Damian Myers
  • Patent number: 6488840
    Abstract: This invention relates to reducing the amount of thiols (mercaptans) in petroleum streams, specifically, mercaptans above the five carbon molecular weight range.
    Type: Grant
    Filed: April 18, 2000
    Date of Patent: December 3, 2002
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Mark Alan Greaney, Michael Charles Kerby, Roby Bearden, Jr.
  • Patent number: 6210564
    Abstract: Sulfur-containing petroleum feeds are desulfurized by contacting the feeds with staged addition of sodium metal at temperatures of at least about 250° C. in the presence of excess hydrogen to sodium metal. The formation of Na2S is substantially suppressed and the formation of NaSH is promoted in the desulfurization process.
    Type: Grant
    Filed: May 28, 1997
    Date of Patent: April 3, 2001
    Assignee: Exxon Research and Engineering Company
    Inventors: Glen Brons, Ronald Damian Myers, Roby Bearden, Jr., John Brenton MacLeod
  • Patent number: 6086751
    Abstract: TAN containing oils, e.g., crudes, are treated by flashing to remove substantially all of the water therefrom, thermally treating the recovered liquid to reduce the naphthenic acid content thereof, and re-combining light gases recovered from the flashing step with the treated liquid.
    Type: Grant
    Filed: August 29, 1997
    Date of Patent: July 11, 2000
    Assignee: Exxon Research and Engineering Co
    Inventors: Marty G. Bienstock, John G. Matragrano, Rutton Dinshaw Patel, Roby Bearden, Jr.
  • Patent number: 6013176
    Abstract: The invention relates to a process for demetallating a petroleum stream by contacting a metals-containing petroleum feed in the presence of a base selected from Group IA and IIA hydroxides and carbonates and ammonium hydroxide and carbonates and mixtures thereof an oxygen containing gas and a phase transfer agent at a temperature of up to 180.degree. C. for a time sufficient to produce a treated petroleum feed having a decreased metals content. The invention provides a method for enhancing the value of petroleum feeds that traditionally have limited use in refineries due to their metals, e.g., Ni and V content.
    Type: Grant
    Filed: December 18, 1998
    Date of Patent: January 11, 2000
    Assignee: Exxon Research and Engineering Co.
    Inventors: Mark Alan Greaney, Roby Bearden, Jr., Michael Charles Kerby
  • Patent number: 5795464
    Abstract: A process for the thermal conversion of the organic component associated with tar sands to lower boiling, higher value products. The conversion is achieved by subjecting the organic component containing from about 1 to 20 wt. % native solids to elevated temperatures and pressures. Compared to conventional thermal conversion processes, such as visbreaking, much higher conversion of the organic component can be achieved owing to the presence of native solids on which coke is deposited instead of fouling the process equipment. This higher conversion is also associated with enhanced removal of sulfur and metals.
    Type: Grant
    Filed: November 25, 1996
    Date of Patent: August 18, 1998
    Assignee: Exxon Research and Engineering Company
    Inventors: Bruce M. Sankey, Peter S. Maa, Roby Bearden, Jr.