Patents by Inventor Roderick A. Hyde

Roderick A. Hyde has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10692599
    Abstract: A patient medical support system is provided including at least one article of medical equipment and a two-way audio-visual system. Such equipment may be used, for example, for telemedicine applications by a patient discharged from a hospital, or other subject in need of remote health care monitoring. Electrical control circuitry is provided for monitoring and controlling usage of the medical support system, including determining operational mode and amount of usage of the medical equipment and/or telepresence system. Electrical control circuitry is provided for controlling a controllable lighting system of the patient medical support system to influence the amount or type of medically useful information in an image of the patient for remote visual monitoring.
    Type: Grant
    Filed: March 8, 2019
    Date of Patent: June 23, 2020
    Assignee: Elwha LLC
    Inventors: Roderick A. Hyde, Jordin T. Kare, Elizabeth A. Sweeney, Lowell L. Wood, Jr.
  • Patent number: 10683365
    Abstract: Devices, compositions, and methods are described which provide a tubular nanostructure or a composite tubular nanostructure targeted to a lipid bilayer membrane. The tubular nanostructure includes a hydrophobic surface region flanked by two hydrophilic surface regions. The tubular nanostructure is configured to interact with a lipid bilayer membrane and form a pore in the lipid bilayer membrane. The tubular nanostructure may be targeted by including at least one ligand configured to bind to one or more cognates on the lipid bilayer membrane of a target cell.
    Type: Grant
    Filed: March 8, 2017
    Date of Patent: June 16, 2020
    Assignee: DEEP SCIENCE, LLC
    Inventors: Mahalaxmi Gita Bangera, Ed Harlow, Roderick A. Hyde, Muriel Y. Ishikawa, Edward K. Y. Jung, Eric C. Leuthardt, Nathan P. Myhrvold, Dennis J. Rivet, Elizabeth A. Sweeney, Clarence T. Tegreene, Lowell L. Wood, Jr., Victoria Y. H. Wood
  • Publication number: 20200178848
    Abstract: Systems are described for monitoring extremities for injury or damage following a physical impact. A device embodiment includes, but is not limited to, a deformable substrate; a sensor assembly coupled to the deformable substrate, the sensor assembly configured to generate one or more sense signals based on detection of a physical impact to a body portion and based on detection of a physiological parameter; circuitry operably coupled to the sensor assembly and configured to receive the one or more sense signals based on detection of the physical impact and to determine whether the physical impact exceeds a threshold impact value, the circuitry configured to instruct the sensor assembly to detect one or more physiological parameters of the body portion when the physical impact exceeds the threshold impact value; and a reporting device operably coupled to the circuitry.
    Type: Application
    Filed: December 5, 2019
    Publication date: June 11, 2020
    Inventors: Roderick A. Hyde, Jordin T. Kare, Eric C. Leuthardt, Mark A. Malamud, Tony S. Pan, Elizabeth A. Sweeney, Clarence T. Tegreene, Charles Whitmer, Lowell L. Wood, JR.
  • Patent number: 10674685
    Abstract: A method of pollinating a plant includes receiving, with a processing circuit, plant data regarding a plant having flowers, and controlling, by the processing circuit, operation of an robotic device to selectively pollinate a portion of the plurality of flowers based on the plant data. The robotic device includes sensors configured to acquire plant data, a pollination device configured to pollinate flowers of a plant, a collection device configured to collect pollen, and a pollination prevention device configured prevent a flower from being pollinated.
    Type: Grant
    Filed: June 4, 2015
    Date of Patent: June 9, 2020
    Assignee: ELWHA LLC
    Inventors: Kenneth G. Caldeira, Alistair K. Chan, Roderick A. Hyde, Jordin T. Kare, Max N. Mankin, Tony S. Pan, Lowell L. Wood, Jr.
  • Patent number: 10679309
    Abstract: Structures and protocols are presented for signaling a status or decision (processing or transmitting a medical record or other resource, e.g.) conditionally. Such signaling may be partly based on one or more symptoms, regimen attributes, performance indicia (compliance indications, e.g.), privacy considerations (patient consent, e.g.), contextual considerations (being in or admitted by a care facility, e.g.), sensor data, or other such determinants. In some contexts this may trigger an incentive being manifested (as a dispensation of an item, e.g.), an intercommunication (telephone call, e.g.) beginning, a device being configured (enabled or customized, e.g.), data distillations being presented or tracked, or other such results.
    Type: Grant
    Filed: December 5, 2012
    Date of Patent: June 9, 2020
    Assignee: Elwha LLC
    Inventors: Roderick A. Hyde, Edward K.Y. Jung, Jordin T. Kare, Eric C. Leuthardt, Royce A. Levien, Richard T. Lord, Robert W. Lord, Mark A. Malamud, John D. Rinaldo, Jr., Dennis J. Rivet, Clarence T. Tegreene, Lowell L. Wood, Jr.
  • Publication number: 20200176140
    Abstract: A method, system, and apparatus for the thermal storage of nuclear reactor generated energy including diverting a selected portion of energy from a portion of a nuclear reactor system to an auxiliary thermal reservoir and, responsive to a shutdown event, supplying a portion of the diverted selected portion of energy to an energy conversion system of the nuclear reactor system.
    Type: Application
    Filed: January 13, 2020
    Publication date: June 4, 2020
    Inventors: Roderick A. Hyde, Muriel Y. Ishikawa, Clarence T. Tegreene, Joshua C. Walter, Lowell L. Wood, JR., Victoria Y.H. Wood
  • Patent number: 10668305
    Abstract: Garment systems including a flexible compression garment, at least one sensor, and at least one therapeutic stimulation delivery device operable responsive to sensing feedback from the at least one sensor, effective to provide therapeutic radiation to a body part of a subject. Methods of using such garment systems are also described.
    Type: Grant
    Filed: February 16, 2017
    Date of Patent: June 2, 2020
    Assignee: ELWHA LLC
    Inventors: Jesse R. Cheatham, III, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Eric C. Leuthardt, Max N. Mankin, Nathan P. Myhrvold, Tony S. Pan, Robert C. Petroski, Elizabeth A. Sweeney, Clarence T. Tegreene, Nicholas W. Touran, Yaroslav A. Urzhumov, Charles Whitmer, Lowell L. Wood, Jr., Victoria Y. H. Wood
  • Patent number: 10668356
    Abstract: Embodiments disclosed herein are directed to protective garments and systems that include a protective garment for protecting one or more body regions of an individual wearing the protective garment.
    Type: Grant
    Filed: July 29, 2016
    Date of Patent: June 2, 2020
    Assignee: ELWHA LLC
    Inventors: Mahalaxmi Gita Bangera, Jesse R. Cheatham, III, Hon Wah Chin, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Eric C. Leuthardt, Elizabeth A. Sweeney
  • Patent number: 10671168
    Abstract: Described embodiments include a system and a method. A system includes a first ultrasound transmitter acoustically coupled to a conducting layer of a display surface and configured to deliver a first ultrasound wave to a selected delineated area. The first ultrasonic wave has parameters sufficient to induce a non-linear vibrational response in the conducting layer. A second ultrasound transmitter is acoustically coupled to the conducting layer and configured to deliver a second ultrasound wave to the selected delineated area. The second ultrasonic wave has parameters sufficient to induce a non-linear vibrational response in the conducting layer. A controller selects a delineated area in response to an indication of a touch to the display surface, and initiates delivery of the first and second ultrasonic waves. A convergence of the first and second ultrasonic waves at the selected delineated area produces a stress pattern perceivable or discernible by the human appendage.
    Type: Grant
    Filed: September 20, 2017
    Date of Patent: June 2, 2020
    Assignee: Elwha LLC
    Inventors: Jesse R. Cheatham, III, William Gates, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Nathan P. Myhrvold, Tony S. Pan, Robert C. Petroski, Lowell L. Wood, Jr., Victoria Y. H. Wood
  • Patent number: 10667742
    Abstract: Breast monitoring systems and methods are described including a flexible substrate fabricated to substantially conform to one or more breasts of a subject; dynamically bendable optical fibers associated with the flexible substrate; a light source operably coupled to the optical fibers; a photodetector positioned to detect light reception from the optical fibers; a reporting device; and a microcontroller including a microprocessor and circuitry, wherein the circuitry includes input circuitry configured to receive a first set of signals and at least one second set of signals from the photodetector; calculation circuitry configured to calculate a curvature delta value based on a comparison of the received first and at least one second set of signals, and calculate a breast volume delta value from the calculated curvature delta value; and reporting circuitry configured to transmit a signal to the reporting device based on the calculated breast volume delta value.
    Type: Grant
    Filed: February 1, 2017
    Date of Patent: June 2, 2020
    Assignee: Elwha LLC
    Inventors: Eleanor V. Goodall, Roderick A. Hyde, Wayne R. Kindsvogel, Elizabeth A. Sweeney, Charles Whitmer
  • Patent number: 10673145
    Abstract: Described embodiments include an antenna system and method. The antenna system includes a surface scattering antenna that has an electromagnetic waveguide structure and a plurality of electromagnetic wave scattering elements. The plurality of electromagnetic wave scattering elements are distributed along the waveguide structure, have a respective activatable electromagnetic response to a propagating electromagnetic wave, and produce a controllable radiation pattern. A gain definition circuit defines a radiation pattern configured to acquire a possible interfering signal. The defined antenna radiation pattern has a field of view covering at least a portion of an undesired field of view of an associated antenna. An antenna controller establishes the defined radiation pattern in the surface scattering antenna by activating the respective electromagnetic response of selected electromagnetic wave scattering elements.
    Type: Grant
    Filed: May 8, 2017
    Date of Patent: June 2, 2020
    Assignee: Elwha LLC
    Inventors: Roderick A. Hyde, Jordin T. Kare, Lowell L. Wood, Jr.
  • Patent number: 10665332
    Abstract: A method for facilitating physiological data acquisition includes scheduling a medical appointment between a patient and a medical provider. The medical appointment is to be conducted at a medical provider location on an appointment date. The method also includes selecting a medical device configured to acquire physiological data regarding the patient. The method further includes sending, to a fulfillment system, a request to provide the medical device to a patient location prior to the appointment date. The patient location is remote from the medical provider location.
    Type: Grant
    Filed: January 23, 2015
    Date of Patent: May 26, 2020
    Assignee: ELWHA LLC
    Inventors: Alistair K. Chan, Jesse R. Cheatham, III, Joel Cherkis, Paul H. Dietz, Tom Driscoll, William Gates, Roderick A. Hyde, Muriel Y. Ishikawa, Neil Jordan, Jordin T. Kare, Eric C. Leuthardt, Nathan P. Myhrvold, Patrick Neill, Tony S. Pan, Robert C. Petroski, David R. Smith, Elizabeth A. Sweeney, Desney S. Tan, Clarence T. Tegreene, David L. Tennenhouse, Yaroslav A. Urzhumov, Gary Wachowicz, Lowell L. Wood, Jr., Victoria Y. H. Wood
  • Patent number: 10655883
    Abstract: A system and associated methods of operation for regulating an environmental variable (such as ambient room temperature) within a target zone. The system includes an occupancy sensor configured to monitor the target zone and determine a number of inhabitants present within the zone. The occupancy sensor generates an occupancy signal communicating the number of detected inhabitants to an environmental control system. Upon receiving the occupancy signal, the environmental control system regulates an environmental variable within the zone based on the number of inhabitants present in the zone.
    Type: Grant
    Filed: January 26, 2018
    Date of Patent: May 19, 2020
    Assignee: Elwha LLC
    Inventors: Jesse R. Cheatham, III, William David Duncan, Eun Young Hwang, Roderick A. Hyde, Tony S. Pan, Clarence T. Tegreene, Victoria Y. H. Wood
  • Publication number: 20200148335
    Abstract: A fluid control system includes a deformable surface that covers a body in at least a first and second direction. The first direction is orthogonal to the second direction. The deformable surface includes a bottom side that faces the body and a top side that is opposite the bottom side. The fluid control system also includes at least one deformer between the deformable surface and the body. The at least one deformer is configured to modify a boundary layer of a fluid that is flowing over the deformable surface by selectively deforming the top side of the surface.
    Type: Application
    Filed: January 10, 2020
    Publication date: May 14, 2020
    Inventors: David William Wine, Roderick A. Hyde, Brian C. Holloway
  • Publication number: 20200121215
    Abstract: A micro impulse radar (MIR) system includes an MIR transceiver circuit configured to transmit, towards a subject, at least one transmitted radar signal, and receive at least one radar return signal. The system includes a control circuit configured to generate a control signal defining a radar signal parameter of the at least one transmitted radar signal, provide the control signal to the MIR transceiver circuit to cause the MIR transceiver circuit to transmit the at least one transmitted signal based on the radar signal parameter, and determine, based on the at least one radar return signal, a physiological parameter of the subject.
    Type: Application
    Filed: October 18, 2019
    Publication date: April 23, 2020
    Inventors: Roderick A. Hyde, David William Wine, Brian C. Holloway
  • Publication number: 20200121214
    Abstract: A micro impulse radar (MIR) system includes a first sensor, a second sensor, and a control circuit. The first sensor includes a micro impulse radar (MIR) sensor configured to receive a plurality of radar returns corresponding to an MIR radar signal transmitted towards a subject. The second sensor is configured to detect sensor data regarding the subject. The control circuit is configured to calculate a physiological parameter of the subject based on the plurality of radar returns and the sensor data.
    Type: Application
    Filed: October 18, 2019
    Publication date: April 23, 2020
    Inventors: Roderick A. Hyde, David William Wine, Mary Neuman, Brian C. Holloway
  • Publication number: 20200121277
    Abstract: A stethoscope system includes a microphone device configured to receive a plurality of sound waves from the subject and output an audio signal corresponding to the plurality of sound waves; and a control circuit configured to receive the audio signal from the microphone device and calculate a physiological parameter based on the audio signal.
    Type: Application
    Filed: October 18, 2019
    Publication date: April 23, 2020
    Inventors: Roderick A. Hyde, David William Wine, Mary Neuman, Roger Zundel, Brian C. Holloway
  • Patent number: 10629338
    Abstract: Described embodiments include a system, method, and apparatus. The apparatus includes a magnetic substrate at least partially covered by a first negative-permittivity layer comprising a first plasmonic outer surface. The apparatus includes a plasmonic nanoparticle having a magnetic element at least partially covered by a second negative-permittivity layer comprising a second plasmonic outer surface. The apparatus includes a dielectric-filled gap between the first plasmonic outer surface and the second outer surface. The first plasmonic outer surface, the dielectric-filled gap, and the second plasmonic outer surface are configured to support one or more mutually coupled plasmonic excitations.
    Type: Grant
    Filed: March 1, 2017
    Date of Patent: April 21, 2020
    Assignee: Elwha LLC
    Inventors: Gleb M. Akselrod, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Maiken H. Mikkelsen, Tony S. Pan, David R. Smith, Clarence T. Tegreene, Yaroslav A. Urzhumov, Charles Whitmer, Lowell L. Wood, Jr., Victoria Y. H. Wood
  • Patent number: 10610635
    Abstract: Devices, systems, or methods are disclosed herein for treatment of disease in a vertebrate subject. The device can include a quasi-planar substrate; and one or more laterally-mobile effector molecule types at least partially embedded within the quasi-planar substrate, wherein the one or more laterally-mobile effector molecule types is configured to interact with one or more cell types. The device can further include one or more sensors configured to detect at least one aspect of an interaction between the at least one of the one or more laterally-mobile effector molecule types and the one or more cell types; and a controller in communication with the one or more sensors, wherein the controller is configured to responsively initiate modification of at least one of the one or more laterally-mobile effector molecule types, the quasi-planar substrate, and the one or more cell types.
    Type: Grant
    Filed: July 11, 2018
    Date of Patent: April 7, 2020
    Assignee: Gearbox LLC
    Inventors: Roderick A. Hyde, Lowell L. Wood, Jr.
  • Patent number: 10609270
    Abstract: Computationally implemented methods and systems include acquiring a request for particular image data that is part of a scene, transmitting the request for the particular image data to an image sensor array that includes more than one image sensor and that is configured to capture the scene that is larger than the requested particular image data, receiving only the particular image data from the image sensor array, and transmitting the received particular image data to at least one requestor. In addition to the foregoing, other aspects are described in the claims, drawings, and text.
    Type: Grant
    Filed: August 27, 2015
    Date of Patent: March 31, 2020
    Assignee: The Invention Science Fund II, LLC
    Inventors: Ehren Brav, Russell Hannigan, Roderick A. Hyde, Muriel Y Ishikawa, 3ric Johanson, Jordin T. Kare, Tony S Pan, Phillip Rutschman, Clarence T. Tegreene, Charles Whitmer, Lowell L. Wood, Jr., Victoria Y. H. Wood