Patents by Inventor Rodney John Allam

Rodney John Allam has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100189610
    Abstract: Heavy hydrocarbons are upgraded more efficiently to lighter, more valuable, hydrocarbons with lower amounts of solid carbonaceous by-products in supercritical water using two heating stages, the first stage at a temperature up to about 775K and the second stage at a temperature from about 870K to about 1075K. The temperature is preferably raised from the first temperature to the second temperature by internal combustion using oxygen.
    Type: Application
    Filed: April 6, 2010
    Publication date: July 29, 2010
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventor: Rodney John Allam
  • Patent number: 7754067
    Abstract: Heavy hydrocarbons are upgraded more efficiently to lighter, more valuable, hydrocarbons with lower amounts of solid carbonaceous by-products in supercritical water using two heating stages, the first stage at a temperature up to about 775K and the second stage at a temperature from about 870K to about 1075K. The temperature is preferably raised from the first temperature to the second temperature by internal combustion using oxygen.
    Type: Grant
    Filed: February 20, 2008
    Date of Patent: July 13, 2010
    Assignee: Air Products and Chemicals, Inc.
    Inventor: Rodney John Allam
  • Publication number: 20100040520
    Abstract: A method and bed for separating a reactive gas from a feed gas mixture is disclosed. The method includes reacting the reactive gas with a bed of reactive solid in an exothermic reaction to create a second solid and a product gas from which the reactive gas is depleted. The product gas is removed and the heat from the reaction is used to liberate the reactive gas from the second solid in an endothermic reaction which yields the reactive solid. The reactive gas is removed and sequestered. Heat reservoir material is included in the bed to retain the heat in support of the endothermic reaction. A device for executing the method having an insulated chamber holding the bed, as well as process units formed of multiple beds are also disclosed. The process units allow the method to be operated cyclically, providing a continuous flow of feed gas, reactive gas and product gas.
    Type: Application
    Filed: October 23, 2009
    Publication date: February 18, 2010
    Applicant: Air Products and Chemicals, Inc.
    Inventors: Jeffrey Raymond Hufton, Robert Quinn, Vincent White, Rodney John Allam
  • Publication number: 20100007146
    Abstract: A superheater in a power plant that superheats steam to operation conditions exceeding an operating limit of an associated steam-producing boiler. The superheater combusts oxygen and fuel with cooled recycled combustion gas to produce a CO2-rich combustion product gas stream at a fixed temperature. The combustion gas is used as the heat transfer fluid in the superheater's heat exchanger. The CO2-rich flue gas stream allows for efficient capture of substantially pure CO2. The superheater may be retrofitted to an existing power plant as a separate component, external to the boiler. The plant may thus have its electrical power output increased, while its overall CO2 emissions per nit of generated power is decreased, even when inexpensive, readily-available fossil fuels are used as the primary fuel for filing the boiler and/or the superheater.
    Type: Application
    Filed: July 11, 2008
    Publication date: January 14, 2010
    Applicant: Air Products and Chemicals, Inc.
    Inventors: Rodney John Allam, Vincent White, Julia Elizabeth Milligan
  • Publication number: 20090206007
    Abstract: Coal is converted into hydrocarbon compounds using supercritical water. The process involves two stages; a first stage in which carbonaceous material is reacted with supercritical water at above 850K to produce a first supercritical fluid reaction mixture comprising hydrocarbon compounds; and a second stage in which hydrocarbon compounds are extracted from coal mixed with at least a portion of the first supercritical fluid at a temperature within a range of from the supercritical temperature of water to about 695K. Char from the second stage is finely divided and may be either be used outside the process, e.g. in a coal fired power station or a gasifier, or used as at least a portion of the carbonaceous material used in the first stage.
    Type: Application
    Filed: February 20, 2008
    Publication date: August 20, 2009
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventor: Rodney John Allam
  • Publication number: 20090206006
    Abstract: Heavy hydrocarbons are upgraded more efficiently to lighter, more valuable, hydrocarbons with lower amounts of solid carbonaceous by-products in supercritical water using two heating stages, the first stage at a temperature up to about 775K and the second stage at a temperature from about 870K to about 1075K. The temperature is preferably raised from the first temperature to the second temperature by internal combustion using oxygen.
    Type: Application
    Filed: February 20, 2008
    Publication date: August 20, 2009
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventor: Rodney John Allam
  • Patent number: 7559213
    Abstract: Hydrogen is liquefied by a process comprising pre-cooling hydrogen feed gas by indirect heat exchange against pressurized liquefied natural gas (“LNG”) to produce pre-cooled hydrogen feed gas and pressurized natural gas, further cooling at least a portion of said pre-cooled hydrogen feed gas by indirect heat exchange against at least one refrigerant to produce condensable hydrogen gas and expanding at least a portion of said condensable hydrogen gas to produce at least partially condensed hydrogen. One advantage of such a process is that the power consumed during liquefaction is significantly less than that consumed in existing hydrogen liquefaction processes which pre-cool hydrogen feed gas by indirect heat exchange against other refrigerants, e.g. liquid nitrogen.
    Type: Grant
    Filed: March 22, 2005
    Date of Patent: July 14, 2009
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Rodney John Allam, Paul Stuart James
  • Publication number: 20090162268
    Abstract: A method for separating a reactive gas from a feed gas mixture is disclosed. The method includes reacting the reactive gas with a bed of reactive solid in an exothermic reaction to create a second solid and a product gas from which the reactive gas is depleted. The product gas is removed and the heat from the reaction is used to liberate the reactive gas from the second solid in an endothermic reaction which yields the reactive solid. The reactive gas is removed and sequestered. Heat reservoir material is included in the bed to retain the heat in support of the endothermic reaction. A device for executing the method having an insulated chamber holding the bed, as well as process units formed of multiple beds are also disclosed. The process units allow the method to be operated cyclically, providing a continuous flow of feed gas, reactive gas and product gas.
    Type: Application
    Filed: December 19, 2007
    Publication date: June 25, 2009
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: Jeffrey Raymond Hufton, Robert Quinn, Vincent White, Rodney John Allam
  • Publication number: 20080226515
    Abstract: SO2 and/or NOx are removed from gaseous CO2 at elevated pressure(s) in the presence of molecular oxygen and water and, when SO2 is to be removed, NOx, to convert SO2 to sulfuric acid and/or NOx to nitric acid. The sulfuric acid and/or nitric acid is/are then removed from the gaseous carbon dioxide to produce SO2-free, NOx-lean carbon dioxide gas. The invention has particular application in the removal of SO2 and/or NOx from carbon dioxide flue gas produced in an oxyfuel combustion process, for example, in a pulverized coal fired power station.
    Type: Application
    Filed: May 30, 2008
    Publication date: September 18, 2008
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: Rodney John Allam, Vincent White, Edwin John Miller
  • Patent number: 7416716
    Abstract: SO2 and/or NOx are removed from gaseous CO2 at elevated pressure(s) in the presence of molecular oxygen and water and, when SO2 is to be removed, NOx, to convert SO2 to sulfuric acid and/or NOx to nitric acid. The sulfuric acid and/or nitric acid is/are then removed from the gaseous carbon dioxide to produce SO2-free, NOx-lean carbon dioxide gas. The invention has particular application in the removal of SO2 and/or NOx from carbon dioxide flue gas produced in an oxyfuel combustion process, for example, in a pulverized coal fired power station.
    Type: Grant
    Filed: November 28, 2005
    Date of Patent: August 26, 2008
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Rodney John Allam, Vincent White, Edwin John Miller
  • Publication number: 20080176174
    Abstract: Carbon dioxide is separated from a feed gas, preferably derived from flue gas from an oxyfuel combustion process, in a membrane separation system to produce separated carbon dioxide gas which is fed to the oxyfuel combustion process to improve the performance of the process.
    Type: Application
    Filed: January 23, 2007
    Publication date: July 24, 2008
    Inventors: Vincent White, Rodney John Allam
  • Publication number: 20080173585
    Abstract: Impure carbon dioxide (“CO2”) comprising a first contaminant selected from the group consisting of oxygen (“O2”) and carbon monoxide (“CO”) is purified by separating expanded impure carbon dioxide liquid in a mass transfer separation column system. The impure carbon dioxide may be derived from, for example, flue gas from an oxyfuel combustion process or waste gas from a hydrogen (“H2”) PSA system.
    Type: Application
    Filed: January 23, 2007
    Publication date: July 24, 2008
    Inventors: Vincent White, Rodney John Allam
  • Publication number: 20080173584
    Abstract: A first contaminant selected from oxygen and carbon monoxide is removed from impure liquid carbon dioxide using a mass transfer separation column system which is reboiled by indirect heat exchange against crude carbon dioxide fluid, the impure liquid carbon dioxide having a greater concentration of carbon dioxide than the crude carbon dioxide fluid. The invention has particular application in the recovery of carbon dioxide from flue gas generated in an oxyfuel combustion process or waste gas from a hydrogen PSA process. Advantages include reducing the level of the first contaminant to not more than 1000 ppm.
    Type: Application
    Filed: January 23, 2007
    Publication date: July 24, 2008
    Inventors: Vincent White, Rodney John Allam
  • Patent number: 7354562
    Abstract: A process for producing a high temperature COx-lean product gas from a high temperature COx-containing feed gas, includes: providing a sorption enhanced reactor containing a first adsorbent, a shift catalyst and a second adsorbent; feeding into the reactor a feed gas containing H2, H2O, CO and CO2; contacting the feed gas with the first adsorbent to provide a CO2 depleted feed gas; contacting the CO2 depleted feed gas with the shift catalyst to form a product mixture comprising CO2 and H2; and contacting the product mixture with a mixture of second adsorbent and shift catalyst to produce the product gas, which contains at least 50 vol. % H2, and less than 5 combined vol. % of CO2 and CO. The adsorbent is a high temperature adsorbent for a Sorption Enhanced Reaction process, such as K2CO3 promoted hydrotalcites, modified double-layered hydroxides, spinels, modified spinels, and magnesium oxides.
    Type: Grant
    Filed: October 25, 2002
    Date of Patent: April 8, 2008
    Assignee: Air Products and Chemicals, Inc.
    Inventors: David Hon Sing Ying, Shankar Nataraj, Jeffrey Raymond Hufton, Jianguo Xu, Rodney John Allam, Sarah Jane Dulley
  • Publication number: 20040081614
    Abstract: A process for producing a high temperature COx-lean product gas from a high temperature COx-containing feed gas, includes: providing a sorption enhanced reactor containing a first adsorbent, a shift catalyst and a second adsorbent; feeding into the reactor a feed gas containing H2, H2O, CO and CO2; contacting the feed gas with the first adsorbent to provide a CO2 depleted feed gas; contacting the CO2 depleted feed gas with the shift catalyst to form a product mixture comprising CO2 and H2; and contacting the product mixture with a mixture of second adsorbent and shift catalyst to produce the product gas, which contains at least 50 vol. % H2, and less than 5 combined vol. % of CO2 and CO. The adsorbent is a high temperature adsorbent for a Sorption Enhanced Reaction process, such as K2CO3 promoted hydrotalcites, modified double-layered hydroxides, spinels, modified spinels, and magnesium oxides.
    Type: Application
    Filed: October 25, 2002
    Publication date: April 29, 2004
    Inventors: David Hon Sing Ying, Shankar Nataraj, Jeffrey Raymond Hufton, Jianguo Xu, Rodney John Allam, Sarah Jane Dulley
  • Patent number: 6669744
    Abstract: A process for the production of synthesis gas from a hydrocarbon fuel and steam and/or oxygen gas wherein at least part of any steam requirement is provided by heat exchange against exhaust gas from a gas turbine driving an air separation unit supplying at least part of any oxygen requirement for the synthesis gas production. The process is particularly applicable when the synthesis gas is used to prepare a synfuel by methanol synthesis or a Fischer-Tropsch process.
    Type: Grant
    Filed: November 22, 2002
    Date of Patent: December 30, 2003
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Rodney John Allam, Rebecca Cotton
  • Patent number: 6615589
    Abstract: A process for generating power from the expansion of steam in a steam turbine system. The steam is generated by at least partially vaporizing pre-heated water by heat exchange against a first fuel gas that is generated exothermically. The at least partially vaporized water is then heated to produce the steam by heat exchange against expanded combustion product gas that is generated by the combustion of a second fuel gas in the presence of compressed oxygen-containing gas and the subsequent expansion of the combustion product gas. The steam is then expanded in a steam turbine system having more than one pressure stage to produce power and an expanded steam stream.
    Type: Grant
    Filed: September 27, 2001
    Date of Patent: September 9, 2003
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Rodney John Allam, Rebecca Cotton
  • Publication number: 20030119919
    Abstract: A process for the production of synthesis gas from a hydrocarbon fuel and steam and/or oxygen gas wherein at least part of any steam requirement is provided by heat exchange against exhaust gas from a gas turbine driving an air separation unit supplying at least part of any oxygen requirement for the synthesis gas production. The process is particularly applicable when the synthesis gas is used to prepare a synfuel by methanol synthesis or a Fischer-Tropsch process.
    Type: Application
    Filed: November 22, 2002
    Publication date: June 26, 2003
    Inventors: Rodney John Allam, Rebecca Cotton
  • Patent number: 6539748
    Abstract: A process and apparatus for the production of low pressure gaseous oxygen (“GOX”) in which compressed and purified feed air (1) is cooled and at least partially condensed in heat exchange means (E1) having a warm end and a cold end and the cooled and at least partially condensed feed air (2) is then distilled in a cryogenic distillation column system (C1, C2). A liquid oxygen (“LOX”) product stream (8) is removed from the column system (C1, C2) and vaporized and warmed by heat exchange (E1) to produce GOX. LOX refrigerant (10) from an external source is used to provide a portion of the refrigeration duty required for the cooling and at least partial condensation of the feed air stream (1).
    Type: Grant
    Filed: October 22, 2001
    Date of Patent: April 1, 2003
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Alan Lindsay Prentice, Rodney John Allam
  • Patent number: 6534551
    Abstract: A process for the production of synthesis gas from a hydrocarbon fuel and steam and/or oxygen gas wherein at least part of any steam requirement is provided by heat exchange against exhaust gas from a gas turbine driving an air separation unit supplying at least part of any oxygen requirement for the synthesis gas production. The process is particularly applicable when the synthesis gas is used to prepare a synfuel by methanol synthesis or a Fischer-Tropsch process.
    Type: Grant
    Filed: September 27, 2001
    Date of Patent: March 18, 2003
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Rodney John Allam, Rebecca Cotton