Patents by Inventor Roger Quon
Roger Quon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12106963Abstract: A method of forming a structure for etch masking that includes forming first dielectric spacers on sidewalls of a plurality of mandrel structures and forming non-mandrel structures in space between adjacent first dielectric spacers. Second dielectric spacers are formed on sidewalls of an etch mask having a window that exposes a connecting portion of a centralized first dielectric spacer. The connecting portion of the centralized first dielectric spacer is removed. The mandrel structures and non-mandrel structures are removed selectively to the first dielectric spacers to provide an etch mask. The connecting portion removed from the centralized first dielectric spacer provides an opening connecting a first trench corresponding to the mandrel structures and a second trench corresponding to the non-mandrel structures.Type: GrantFiled: April 27, 2023Date of Patent: October 1, 2024Assignee: Tessera LLCInventors: Sean D. Burns, Lawrence A. Clevenger, Matthew E. Colburn, Nelson M. Felix, Sivananda K. Kanakasabapathy, Christopher J. Penny, Roger A. Quon, Nicole A. Saulnier
-
Publication number: 20240282809Abstract: A super junction device with an increased voltage rating may be formed by decreasing the width of the P-type region and increasing the doping concentration, while also increasing the height of the overall device. However, instead of etching a trench in the N-type material to fill with the P-type material, a trench may be etched for both the P-type region and an adjacent N-type region. This allows the height of the overall device to be increased while maintaining a feasible aspect ratio for the trench. The P-type material may then be formed as a sidewall liner on the trench that is relatively thin compared to the remaining width of the trench. The trench may then be filled with N-type material such that the P-type region fills the space between the N-type regions without any voids or seams, while having a width that would be unattainable using traditional etch-and-fill methods for the P-type region alone.Type: ApplicationFiled: February 17, 2023Publication date: August 22, 2024Applicant: Applied Materials, Inc.Inventors: Amirhasan NOURBAKHSH, Raman GAIRE, Pei LIU, Tyler SHERWOOD, Ryan Scott SMITH, Roger QUON, Siddarth KRISHNAN
-
Publication number: 20240282813Abstract: A super junction device with an increased manufacturing throughput may be formed by forming narrow trenches lined with a P-type liner and rapidly filled with a passive fill material. Instead of etching trenches with aspect ratio large enough to reliably fill with doped P-type material, the aspect ratio of the trench may be reduced to shrink the size of the device. This smaller trench may then be lined with a relatively thin (e.g., about 1 ?m to about 2 ?m) P-type liner instead of completely filling the trench with P-type material. Inside the P-type liner, the trench may then be filled with a passive fill material. Filling the trench with the passive fill material may be carried out in a matter of minutes at relatively high temperatures, thereby likely causing a void or seam to form within the passive fill material. However, because the passive fill material does not affect the operation of the device, this type of defect can exist in the device.Type: ApplicationFiled: February 17, 2023Publication date: August 22, 2024Applicant: Applied Materials, Inc.Inventors: Amirhasan Nourbakhsh, Raman Gaire, Roger Quon, Siddarth Krishnan
-
Publication number: 20240096627Abstract: A method of forming a structure for etch masking that includes forming first dielectric spacers on sidewalls of a plurality of mandrel structures and forming non-mandrel structures in space between adjacent first dielectric spacers. Second dielectric spacers are formed on sidewalls of an etch mask having a window that exposes a connecting portion of a centralized first dielectric spacer. The connecting portion of the centralized first dielectric spacer is removed. The mandrel structures and non-mandrel structures are removed selectively to the first dielectric spacers to provide an etch mask. The connecting portion removed from the centralized first dielectric spacer provides an opening connecting a first trench corresponding to the mandrel structures and a second trench corresponding to the non-mandrel structures.Type: ApplicationFiled: April 27, 2023Publication date: March 21, 2024Inventors: Sean D. Burns, Lawrence A. Clevenger, Matthew E. Colburn, Nelson M. Felix, Sivananda K. Kanakasabapathy, Christopher J. Penny, Roger A. Quon, Nicole A. Saulnier
-
Patent number: 11819847Abstract: Embodiments of the present disclosure provide nanopore devices, such as nanopore sensors and/or other nanofluidic devices. In one or more embodiments, a nanopore device contains a substrate, an optional lower protective oxide layer disposed on the substrate, a membrane disposed on the lower protective oxide layer, and an optional upper protective oxide layer disposed on the membrane. The membrane has a pore and contains silicon nitride. The silicon nitride has a nitrogen to silicon ratio of about 0.98 to about 1.02 and the membrane has an intrinsic stress value of about ?1,000 MPa to about 1,000 MPa. The nanopore device also contains a channel extending through at least the substrate, the lower protective oxide layer, the membrane, the upper protective oxide layer, and the upper protective silicon nitride layer.Type: GrantFiled: July 20, 2020Date of Patent: November 21, 2023Assignee: APPLIED MATERIALS, INC.Inventors: Ryan Scott Smith, Roger Quon, David Collins, George Odlum, Raghav Sreenivasan, Joseph R. Johnson
-
Patent number: 11769665Abstract: Exemplary semiconductor processing methods may include forming a p-type silicon-containing material on a substrate including a first n-type silicon-containing material defining one or more features. The p-type silicon-containing material may extend along at least a portion of the one or more features defined in the first n-type silicon-containing material. The methods may include removing a portion of the p-type silicon-containing material. The portion of the p-type silicon-containing material may be removed from a bottom of the one or more features. The methods may include providing a silicon-containing material. The methods may include depositing a second n-type silicon-containing material on the substrate. The second n-type silicon-containing material may fill the one or more features formed in the first n-type silicon-containing material and may separate regions of remaining p-type silicon-containing material.Type: GrantFiled: January 11, 2022Date of Patent: September 26, 2023Assignee: Applied Materials, Inc.Inventors: Amirhasan Nourbakhsh, Raman Gaire, Tyler Sherwood, Lan Yu, Roger Quon, Siddarth Krishnan
-
Publication number: 20230223256Abstract: Exemplary semiconductor processing methods may include forming a p-type silicon-containing material on a substrate including a first n-type silicon-containing material defining one or more features. The p-type silicon-containing material may extend along at least a portion of the one or more features defined in the first n-type silicon-containing material. The methods may include removing a portion of the p-type silicon-containing material. The portion of the p-type silicon-containing material may be removed from a bottom of the one or more features. The methods may include providing a silicon-containing material. The methods may include depositing a second n-type silicon-containing material on the substrate. The second n-type silicon-containing material may fill the one or more features formed in the first n-type silicon-containing material and may separate regions of remaining p-type silicon-containing material.Type: ApplicationFiled: January 11, 2022Publication date: July 13, 2023Applicant: Applied Materials, Inc.Inventors: Amirhasan Nourbakhsh, Raman Gaire, Tyler Sherwood, Lan Yu, Roger Quon, Siddarth Krishnan
-
Patent number: 11670510Abstract: A method of forming a structure for etch masking that includes forming first dielectric spacers on sidewalls of a plurality of mandrel structures and forming non-mandrel structures in space between adjacent first dielectric spacers. Second dielectric spacers are formed on sidewalls of an etch mask having a window that exposes a connecting portion of a centralized first dielectric spacer. The connecting portion of the centralized first dielectric spacer is removed. The mandrel structures and non-mandrel structures are removed selectively to the first dielectric spacers to provide an etch mask. The connecting portion removed from the centralized first dielectric spacer provides an opening connecting a first trench corresponding to the mandrel structures and a second trench corresponding to the non-mandrel structures.Type: GrantFiled: May 24, 2021Date of Patent: June 6, 2023Assignee: Tessera LLCInventors: Sean D. Burns, Lawrence A. Clevenger, Matthew E. Colburn, Nelson M. Felix, Sivananda K. Kanakasabapathy, Christopher J. Penny, Roger A. Quon, Nicole A. Saulnier
-
Patent number: 11536708Abstract: Embodiments of the present disclosure provide dual pore sensors and methods for producing these dual pore sensors. The method includes forming a film stack, where the film stack contains two silicon layers and two membrane layers, and then etching the film stack to produce a channel extending therethrough and having two reservoirs and two nanopores. The method also includes depositing a oxide layer on inner surfaces of the reservoirs and nanopores, depositing a dielectric layer on the oxide layer, and forming a metal contact extending through a portion of the stack. The method further includes etching the dielectric layers to form wells, etching the first silicon layer to reveal the protective oxide layer deposited on the inner surfaces of a reservoir, and etching the protective oxide layer deposited on the inner surfaces of the reservoirs and the nanopores.Type: GrantFiled: January 9, 2020Date of Patent: December 27, 2022Assignee: APPLIED MATERIALS, INC.Inventors: Mark J. Saly, Keenan Navarre Woods, Joseph R. Johnson, Bhaskar Jyoti Bhuyan, William J. Durand, Michael Chudzik, Raghav Sreenivasan, Roger Quon
-
Publication number: 20220242725Abstract: Embodiments of the present disclosure provide methods of forming solid state dual pore sensors which may be used for biopolymer sequencing and dual pore sensors formed therefrom. In one embodiment, a method of forming a dual pore sensor includes providing a pattern in a surface of a substrate. Generally, the pattern features two fluid reservoirs separated by a divider wall. The method further includes depositing a layer of sacrificial material into the two fluid reservoirs, depositing a membrane layer, patterning two nanopores through the membrane layer, removing the sacrificial material from the two fluid reservoirs, and patterning one or more fluid ports and a common chamber.Type: ApplicationFiled: April 15, 2020Publication date: August 4, 2022Inventors: Joseph R. JOHNSON, Roger QUON, Archana KUMAR, Ryan Scott SMITH, Jeremiah HEBDING, Raghav SREENIVASAN
-
Publication number: 20220236250Abstract: Embodiments of the present disclosure provide methods of forming solid state dual pore sensors which may be used for biopolymer sequencing and dual pore sensors formed therefrom. In one embodiment, a dual pore sensor features a substrate having a patterned surface comprising two recessed regions spaced apart by a divider wall and a membrane layer disposed on the patterned surface. The membrane layer, the divider wall, and one or more surfaces of each of the two recessed regions collectively define a first fluid reservoir and a second fluid reservoir. A first nanopore is disposed through a portion of the membrane layer disposed over the first fluid reservoir and a second nanopore is disposed through a portion of the membrane layer disposed over the second fluid reservoir. Herein, opposing surfaces of the divider wall are sloped to each form an angle of less than 90° with a respective reservoir facing surface of the membrane layer.Type: ApplicationFiled: April 15, 2020Publication date: July 28, 2022Inventors: Joseph R. JOHNSON, Roger QUON, Archana KUMAR, Ryan Scott SMITH, Jeremiah HEBDING, Raghav SREENIVASAN
-
Publication number: 20220155279Abstract: Nanopore flow cells and methods of manufacturing thereof are provided herein. In one embodiment a method of forming a flow cell includes forming a multilayer stack on a first substrate, e.g., a monocrystalline silicon substrate, before transferring the multilayer stack to a second substrate, e.g., a glass substrate. Here, the multilayer stack features a membrane layer, having a first opening formed therethrough, where the membrane layer is disposed on the first substrate, and a material layer is disposed on the membrane layer. The method further includes patterning the second substrate to form a second opening therein and bonding the patterned surface of the second substrate to a surface of the multilayer stack. The method further includes thinning the first substrate and thinning the second substrate. Here, the second substrate is thinned to where the second opening is disposed therethrough.Type: ApplicationFiled: February 2, 2022Publication date: May 19, 2022Inventors: Joseph R. JOHNSON, Roger QUON
-
Patent number: 11249067Abstract: Nanopore flow cells and methods of manufacturing thereof are provided herein. In one embodiment a method of forming a flow cell includes forming a multi-layer stack on a first substrate, e.g., a monocrystalline silicon substrate, before transferring the multi-layer stack to a second substrate, e.g., a glass substrate. Here, the multi-layer stack features a membrane layer, having a first opening formed therethrough, where the membrane layer is disposed on the first substrate, and a material layer is disposed on the membrane layer. The method further includes patterning the second substrate to form a second opening therein and bonding the patterned surface of the second substrate to a surface of the multi-layer stack. The method further includes thinning the first substrate and thinning the second substrate. Here, the second substrate is thinned to where the second opening is disposed therethrough.Type: GrantFiled: September 17, 2019Date of Patent: February 15, 2022Assignee: Applied Materials, Inc.Inventors: Joseph R. Johnson, Roger Quon
-
Publication number: 20220016628Abstract: Embodiments of the present disclosure provide nanopore devices, such as nanopore sensors and/or other nanofluidic devices. In one or more embodiments, a nanopore device contains a substrate, an optional lower protective oxide layer disposed on the substrate, a membrane disposed on the lower protective oxide layer, and an optional upper protective oxide layer disposed on the membrane. The membrane has a pore and contains silicon nitride. The silicon nitride has a nitrogen to silicon ratio of about 0.98 to about 1.02 and the membrane has an intrinsic stress value of about ?1,000 MPa to about 1,000 MPa. The nanopore device also contains a channel extending through at least the substrate, the lower protective oxide layer, the membrane, the upper protective oxide layer, and the upper protective silicon nitride layer.Type: ApplicationFiled: July 20, 2020Publication date: January 20, 2022Inventors: Ryan Scott SMITH, Roger QUON, David COLLINS, George ODLUM, Raghav SREENIVASAN, Joseph R. JOHNSON
-
Patent number: 11133216Abstract: A nitridation treatment method is provided. The nitridation treatment method includes executing a nitridation treatment with respect to a hydrophobic surface defining an interconnect trench to convert the hydrophobic surface to a hydrophilic surface. The nitridation treatment method further includes depositing a seed layer including a conductive material and manganese on the hydrophilic surface. The nitridation treatment method also includes thermally driving all the manganese out of the seed layer to form a diffusion barrier including manganese at the hydrophilic surface. In addition, the nitridation treatment method includes filling remaining space in the interconnect trench with the conductive material to form an interconnect.Type: GrantFiled: June 1, 2018Date of Patent: September 28, 2021Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Hsueh-Chung Chen, Roger A. Quon, Chih-Chao Yang
-
Publication number: 20210280422Abstract: A method of forming a structure for etch masking that includes forming first dielectric spacers on sidewalls of a plurality of mandrel structures and forming non-mandrel structures in space between adjacent first dielectric spacers. Second dielectric spacers are formed on sidewalls of an etch mask having a window that exposes a connecting portion of a centralized first dielectric spacer. The connecting portion of the centralized first dielectric spacer is removed. The mandrel structures and non-mandrel structures are removed selectively to the first dielectric spacers to provide an etch mask. The connecting portion removed from the centralized first dielectric spacer provides an opening connecting a first trench corresponding to the mandrel structures and a second trench corresponding to the non-mandrel structures.Type: ApplicationFiled: May 24, 2021Publication date: September 9, 2021Inventors: Sean D. Burns, Lawrence A. Clevenger, Matthew E. Colburn, Nelson M. Felix, Sivananda K. Kanakasabapathy, Christopher J. Penny, Roger A. Quon, Nicole A. Saulnier
-
Publication number: 20210215664Abstract: Embodiments of the present disclosure provide dual pore sensors and methods for producing these dual pore sensors. The method includes forming a film stack, where the film stack contains two silicon layers and two membrane layers, and then etching the film stack to produce a channel extending therethrough and having two reservoirs and two nanopores. The method also includes depositing a oxide layer on inner surfaces of the reservoirs and nanopores, depositing a dielectric layer on the oxide layer, and forming a metal contact extending through a portion of the stack. The method further includes etching the dielectric layers to form wells, etching the first silicon layer to reveal the protective oxide layer deposited on the inner surfaces of a reservoir, and etching the protective oxide layer deposited on the inner surfaces of the reservoirs and the nanopores.Type: ApplicationFiled: January 9, 2020Publication date: July 15, 2021Inventors: Mark J. SALY, Keenan Navarre WOODS, Joseph R. JOHNSON, Bhaskar Jyoti BHUYAN, William J. DURAND, Michael CHUDZIK, Raghav SREENIVASAN, Roger QUON
-
Patent number: 11018007Abstract: A method of forming a structure for etch masking that includes forming first dielectric spacers on sidewalls of a plurality of mandrel structures and forming non-mandrel structures in space between adjacent first dielectric spacers. Second dielectric spacers are formed on sidewalls of an etch mask having a window that exposes a connecting portion of a centralized first dielectric spacer. The connecting portion of the centralized first dielectric spacer is removed. The mandrel structures and non-mandrel structures are removed selectively to the first dielectric spacers to provide an etch mask. The connecting portion removed from the centralized first dielectric spacer provides an opening connecting a first trench corresponding to the mandrel structures and a second trench corresponding to the non-mandrel structures.Type: GrantFiled: November 6, 2019Date of Patent: May 25, 2021Assignee: Tessera, Inc.Inventors: Sean D. Burns, Lawrence A. Clevenger, Matthew E. Colburn, Nelson M. Felix, Sivananda K. Kanakasabapathy, Christopher J. Penny, Roger A. Quon, Nicole A. Saulnier
-
Patent number: 10957583Abstract: An interconnect structure having a pitch of less than 40 nanometers and a self-aligned quadruple patterning process for forming the interconnect structure includes three types of lines: a ? line defined by a patterned bottom mandrel formed in the self-aligned quadruple patterning process; a ? line defined by location underneath a top mandrel formed in the self-aligned quadruple patterning process; and an ? line defined by elimination located underneath neither the top mandrel or the bottom mandrel formed in the self-aligned quadruple patterning process. The interconnect structure further includes multi-track jogs selected from a group consisting of a ??? jog; a ??? jog; an ??? jog; a ??? jog, and combinations thereof. The first and third positions refer to the uncut line and the second position refers to the cut line in the self-aligned quadruple patterning process.Type: GrantFiled: August 28, 2019Date of Patent: March 23, 2021Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Sean D. Burns, Lawrence A. Clevenger, Matthew E. Colburn, Sivananda K. Kanakasabapathy, Yann A. M. Mignot, Christopher J. Penny, Roger A. Quon, Nicole A. Saulnier
-
Patent number: 10840174Abstract: Technical solutions are described for configuring a synaptic array. An example computer implemented method includes selecting a first electronic circuit and a second electronic circuit from the synaptic array for executing a task. The method further includes connecting the first electronic circuit to the second electronic circuit to facilitate passage of electric current by forming a metallic protrusion to connect a first connector of the first electronic circuit and a second connector of the second electronic circuit.Type: GrantFiled: April 12, 2017Date of Patent: November 17, 2020Assignee: Samsung Electronics Co., Ltd.Inventors: Shawn P. Fetterolf, Jin-Ping Han, Christian Lavoie, Paul S. McLaughlin, Ahmet S. Ozcan, Roger A. Quon