Patents by Inventor Roger Quon
Roger Quon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20180082955Abstract: Semiconductor structures including copper interconnect structures and methods include selective surface modification of copper by providing a CuxTiyNz alloy in the surface. The methods generally include forming a titanium nitride layer on an exposed copper surface followed by annealing to form the CuxTiyNz, alloy in the exposed copper surface. Subsequently, the titanium layer is removed by a selective wet etching.Type: ApplicationFiled: October 4, 2017Publication date: March 22, 2018Inventors: Raghuveer R. Patlolla, Cornelius Brown Peethala, Roger A. Quon, Chih-Chao Yang
-
Publication number: 20180082945Abstract: Conductive contacts include a first conductor disposed within a first dielectric layer, the first conductor having a recessed area in least one surface. A second dielectric layer is formed over the first dielectric layer, comprising a trench positioned over the first conductor. A second conductor is formed in the trench and the recessed area to form a conductive contact with the first conductor.Type: ApplicationFiled: February 28, 2017Publication date: March 22, 2018Inventors: Lawrence A. Clevenger, Roger A. Quon, Terry A. Spooner, Wei Wang, Chih -Chao Yang
-
Patent number: 9911647Abstract: A method for forming conductive lines on a wafer comprises forming a first hardmask, a planarizing layer, a second hardmask, a layer of sacrificial mandrel material on the second hardmask, and patterning a mask on the layer of sacrificial material. A first sacrificial mandrel and a second sacrificial mandrel and a gap are formed. A layer of spacer material is deposited in the gap. Portions of the first sacrificial mandrel and the second sacrificial mandrel are removed, and exposed portions of the second hardmask, the planarizing layer and the first hardmask are removed to expose portions of the insulator layer. The second hardmask, the spacers, and the planarizing layer are removed. Exposed portions of the insulator layer are removed to form a trench in the insulator layer, and the trench is filled with a conductive material.Type: GrantFiled: August 15, 2017Date of Patent: March 6, 2018Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Sean D. Burns, Lawrence A. Clevenger, Anuja E. DeSilva, Nelson M. Felix, Sivananda K. Kanakasabapathy, Yann A. M. Mignot, Christopher J. Penny, Roger A. Quon, Nicole A. Saulnier
-
Publication number: 20180061702Abstract: Semiconductor structures include a patterned interlayer dielectric overlaying a semiconductor substrate. The interlayer dielectric includes a first dielectric layer and at least one additional dielectric layer disposed on the first dielectric layer, wherein the patterned interlayer dielectric comprises at least one opening extending through the interlayer dielectric to the semiconductor substrate. Chemically enriched regions including ions of Si, P, B, N, O and combinations thereof are disposed in surfaces of the first dielectric layer and the at least one dielectric layer defined by the at least one opening. Also described are methods of for forming an interconnect structure in a semiconductor structure.Type: ApplicationFiled: August 30, 2016Publication date: March 1, 2018Inventors: Lawrence A. Clevenger, Roger A. Quon, Terry A. Spooner, Wei Wang, Chih-Chao Yang
-
Patent number: 9899317Abstract: A method for fabricating a semiconductor structure includes the following steps. A substrate including a dielectric material is formed. A surface of the substrate is molecularly modified to convert the surface of the substrate to a nitrogen-enriched surface. A metal layer is deposited on the molecularly modified surface of the substrate interacting with the molecularly modified surface to form a nitridized metal layer.Type: GrantFiled: September 29, 2016Date of Patent: February 20, 2018Assignee: International Business Machines CorporationInventors: Lawrence A. Clevenger, Roger A. Quon, Hosadurga K. Shobha, Terry A. Spooner, Wei Wang, Chi-Chao Yang
-
Publication number: 20180025943Abstract: A method for forming conductive contacts on a wafer comprises forming a first hardmask, planarizing layer, second hardmask, and a layer of sacrificial mandrel material, and removing portions of the layer of sacrificial mandrel material to expose portions of the second hardmask and form a first and second sacrificial mandrel. Spacers are formed adjacent to the sacrificial mandrels. A filler material is deposited on the second hardmask, and a first mask is formed on the filler material. An exposed portion of the second sacrificial mandrel is removed to form a first cavity. The depth of the first cavity is increased. The first mask, portions of the first and second sacrificial mandrels, the filler material, portions of the second hardmask, the spacers, portions of the planarization layer and the first hardmask are removed. A second cavity is formed and the first and second cavities are filled with a conductive material.Type: ApplicationFiled: August 15, 2017Publication date: January 25, 2018Inventors: Sean D. Burns, Lawrence A. Clevenger, Matthew E. Colburn, Sivananda K. Kanakasabapathy, Yann A. M. Mignot, Christopher J. Penny, Roger A. Quon, Nicole Saulnier
-
Publication number: 20180005885Abstract: A method for forming conductive lines comprises forming a hardmask on an insulator layer, a planarizing layer on the hardmask, and a hardmask on the planarizing layer, removing exposed portions of a layer of sacrificial mandrel material to form first and second sacrificial mandrels on the hardmask, and depositing a layer of spacer material in the gap, and over exposed portions of the first and second sacrificial mandrels and the hardmask. Portions of the layer of spacer material are removed to expose the first and second sacrificial mandrels. A filler material is deposited between the first and second sacrificial mandrels. A portion of the filler material is removed to expose the first and second sacrificial mandrels. Portions of the layer of spacer material are removed to expose portions of the hardmask. A trench is formed in the insulator layer, and the trench is filled with a conductive material.Type: ApplicationFiled: January 13, 2017Publication date: January 4, 2018Inventors: Sean D. Burns, Lawrence A. Clevenger, Matthew E. Colburn, Sivananda K. Kanakasabapathy, Yann A.M. Mignot, Christopher J. Penny, Roger A. Quon, Nicole A. Saulnier
-
Patent number: 9859218Abstract: Semiconductor structures including copper interconnect structures and methods include selective surface modification of copper by providing a CuxTiyNz alloy in the surface. The methods generally include forming a titanium nitride layer on an exposed copper surface followed by annealing to form the CuxTiyNz alloy in the exposed copper surface. Subsequently, the titanium layer is removed by a selective wet etching.Type: GrantFiled: September 19, 2016Date of Patent: January 2, 2018Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Raghuveer R. Patlolla, Cornelius Brown Peethala, Roger A. Quon, Chih-Chao Yang
-
Patent number: 9852946Abstract: A method for forming conductive lines on a wafer comprises forming a first sacrificial mandrel and a second sacrificial mandrel. Spacers are formed adjacent to the first and second sacrificial mandrels. A filler material is deposited on the second hardmask. A first mask is formed on a portion of the second sacrificial mandrel. A first cavity and a second cavity are formed that expose portions of the second hardmask, and exposed portions of the second mask and exposed portions of the filler material are removed to expose portions of the first hardmask. Exposed portions of the first hardmask, the planarizing layer and the first hardmask are removed to expose portions of the insulator layer. Exposed portions of the insulator layer are removed to form a trench in the insulator layer and the trench is filled with a conductive material.Type: GrantFiled: June 8, 2016Date of Patent: December 26, 2017Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Sean D. Burns, Lawrence A. Clevenger, Matthew E. Colburn, Sivananda K. Kanakasabapathy, Yann A. M. Mignot, Christopher J. Penny, Roger A. Quon, Nicole Saulnier
-
Publication number: 20170358492Abstract: A method for forming conductive lines on a wafer comprises forming a first sacrificial mandrel and a second sacrificial mandrel. Spacers are formed adjacent to the first and second sacrificial mandrels. A filler material is deposited on the second hardmask. A first mask is formed on a portion of the second sacrificial mandrel. A first cavity and a second cavity are formed that expose portions of the second hardmask, and exposed portions of the second mask and exposed portions of the filler material are removed to expose portions of the first hardmask. Exposed portions of the first hardmask, the planarizing layer and the first hardmask are removed to expose portions of the insulator layer. Exposed portions of the insulator layer are removed to form a trench in the insulator layer and the trench is filled with a conductive material.Type: ApplicationFiled: June 8, 2016Publication date: December 14, 2017Inventors: Sean D. Burns, Lawrence A. Clevenger, Matthew E. Colburn, Sivananda K. Kanakasabapathy, Yann A. M. Mignot, Christopher J. Penny, Roger A. Quon, Nicole Saulnier
-
Publication number: 20170358487Abstract: A method for forming conductive lines on a wafer comprises forming a first hardmask, a planarizing layer, a second hardmask, a layer of sacrificial mandrel material on the second hardmask, and patterning a mask on the layer of sacrificial material. A first sacrificial mandrel and a second sacrificial mandrel and a gap are formed. A layer of spacer material is deposited in the gap. Portions of the first sacrificial mandrel and the second sacrificial mandrel are removed, and exposed portions of the second hardmask, the planarizing layer and the first hardmask are removed to expose portions of the insulator layer. The second hardmask, the spacers, and the planarizing layer are removed. Exposed portions of the insulator layer are removed to form a trench in the insulator layer, and the trench is filled with a conductive material.Type: ApplicationFiled: August 15, 2017Publication date: December 14, 2017Inventors: Sean D. Burns, Lawrence A. Clevenger, Anuja E. DeSilva, Nelson M. Felix, Sivananda K. Kanakasabapathy, Yann A. M. Mignot, Christopher J. Penny, Roger A. Quon, Nicole A. Saulnier
-
Publication number: 20170352585Abstract: An interconnect structure having a pitch of less than 40 nanometers and a self-aligned quadruple patterning process for forming the interconnect structure includes three types of lines: a ? line defined by a patterned bottom mandrel formed in the self-aligned quadruple patterning process; a ? line defined by location underneath a top mandrel formed in the self-aligned quadruple patterning process; and an ? line defined by elimination located underneath neither the top mandrel or the bottom mandrel formed in the self-aligned quadruple patterning process. The interconnect structure further includes multi-track jogs selected from a group consisting of a ??? jog; a ??? jog; an ??? jog; a ??? jog, and combinations thereof. The first and third positions refer to the uncut line and the second position refers to the cut line in the self-aligned quadruple patterning process.Type: ApplicationFiled: June 3, 2016Publication date: December 7, 2017Inventors: Sean D. Burns, Lawrence A. Clevenger, Matthew E. Colburn, Sivananda K. Kanakasabapathy, Yann A.M. Mignot, Christopher J. Penny, Roger A. Quon, Nicole A. Saulnier
-
Patent number: 9786603Abstract: Conductive contacts and methods of forming vias include forming a trench that penetrates a dielectric layer to expose a surface of an underlying conductor. Exposed surfaces of the dielectric layer and the exposed surface of the underlying conductor are nitridized to form a layer of nitridation at the exposed surfaces. The exposed surface of the underlying conductor is etched away to form a recessed area in the underlying conductor. A conductive via is formed in the trench and the recessed area that forms a conductive contact with the underlying conductor.Type: GrantFiled: September 22, 2016Date of Patent: October 10, 2017Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Lawrence A. Clevenger, Roger A. Quon, Terry A. Spooner, Wei Wang, Chih-Chao Yang
-
Patent number: 9786554Abstract: A method for forming conductive lines on a wafer comprises forming a first hardmask, a planarizing layer, a second hardmask, a layer of sacrificial mandrel material on the second hardmask, and patterning a mask on the layer of sacrificial material. A first sacrificial mandrel and a second sacrificial mandrel and a gap are formed. A layer of spacer material is deposited in the gap. Portions of the first sacrificial mandrel and the second sacrificial mandrel are removed, and exposed portions of the second hardmask, the planarizing layer and the first hardmask are removed to expose portions of the insulator layer. The second hardmask, the spacers, and the planarizing layer are removed. Exposed portions of the insulator layer are removed to form a trench in the insulator layer, and the trench is filled with a conductive material.Type: GrantFiled: June 8, 2016Date of Patent: October 10, 2017Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Sean D. Burns, Lawrence A. Clevenger, Anuja E. DeSilva, Nelson M. Felix, Sivananda K. Kanakasabapathy, Yann A. M. Mignot, Christopher J. Penny, Roger A. Quon, Nicole A. Saulnier
-
Patent number: 9779944Abstract: A method for manufacturing a semiconductor device includes forming a plurality of mandrels on a dielectric layer, conformally depositing a spacer layer on the plurality of mandrels, removing a portion of the spacer layer from a top surface of at least one of the plurality of mandrels, removing the at least one of the plurality of mandrels to create at least one opening, and filling the at least opening with a cut fill material, wherein the cut fill material comprises the same material as a material of the spacer layer.Type: GrantFiled: September 13, 2016Date of Patent: October 3, 2017Assignee: International Business Machines CorporationInventors: Sean D. Burns, Lawrence A. Clevenger, Matthew E. Colburn, Nelson M. Felix, Sivananda K. Kanakasabapathy, Yann A. M. Mignot, Christopher J. Penny, Roger A. Quon, Nicole A. Saulnier
-
Patent number: 9773700Abstract: A method for forming conductive contacts on a wafer comprises forming a first hardmask, planarizing layer, second hardmask, and a layer of sacrificial mandrel material, and removing portions of the layer of sacrificial mandrel material to expose portions of the second hardmask and form a first and second sacrificial mandrel. Spacers are formed adjacent to the sacrificial mandrels. A filler material is deposited on the second hardmask, and a first mask is formed on the filler material. An exposed portion of the second sacrificial mandrel is removed to form a first cavity. The depth of the first cavity is increased. The first mask, portions of the first and second sacrificial mandrels, the filler material, portions of the second hardmask, the spacers, portions of the planarization layer and the first hardmask are removed. A second cavity is formed and the first and second cavities are filled with a conductive material.Type: GrantFiled: June 8, 2016Date of Patent: September 26, 2017Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Sean D. Burns, Lawrence A. Clevenger, Matthew E. Colburn, Sivananda K. Kanakasabapathy, Yann A. M. Mignot, Christopher J. Penny, Roger A. Quon, Nicole Saulnier
-
Patent number: 9761655Abstract: Stacked planar capacitor structures and methods of fabricating the same generally include stacking two or more capacitors with three electrodes by sharing a middle electrode, wherein each capacitor has a different area. The stacked structure does not include step heights, which permits fabrication of multiple structures where desired.Type: GrantFiled: June 20, 2016Date of Patent: September 12, 2017Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Takashi Ando, Lawrence A. Clevenger, Hemanth Jagannathan, Roger A. Quon
-
Patent number: 9607886Abstract: A method for forming conductive lines comprises forming a hardmask on an insulator layer, a planarizing layer on the hardmask, and a hardmask on the planarizing layer, removing exposed portions of a layer of sacrificial mandrel material to form first and second sacrificial mandrels on the hardmask, and depositing a layer of spacer material in the gap, and over exposed portions of the first and second sacrificial mandrels and the hardmask. Portions of the layer of spacer material are removed to expose the first and second sacrificial mandrels. A filler material is deposited between the first and second sacrificial mandrels. A portion of the filler material is removed to expose the first and second sacrificial mandrels. Portions of the layer of spacer material are removed to expose portions of the hardmask. A trench is formed in the insulator layer, and the trench is filled with a conductive material.Type: GrantFiled: June 30, 2016Date of Patent: March 28, 2017Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Sean D. Burns, Lawrence A. Clevenger, Matthew E. Colburn, Sivananda K. Kanakasabapathy, Yann A. M. Mignot, Christopher J. Penny, Roger A. Quon, Nicole A. Saulnier
-
Patent number: 9601513Abstract: Various embodiments include methods and integrated circuit structures. One method includes masking a structure with a mask to cover at least a portion of the structure under the mask, selectively implanting a material through a semiconductor layer and into a buried insulator layer forming an implant region. The implant region is substantially parallel to and below an upper surface of the structure. The method may also include masking an additional portion of the structure; etching a set of access ports though the semiconductor layer and partially through the insulator layer into the implant region; etching at least one tunnel below the upper surface of the structure in the implant region using the set of access; and depositing a conductor into the at least one tunnel and the set of access ports.Type: GrantFiled: December 22, 2015Date of Patent: March 21, 2017Assignee: GLOBALFOUNDRIES INC.Inventors: Terence B. Hook, Andreas Scholze, Lars W. Liebmann, Roger A. Quon, Andrew H. Simon
-
Patent number: 9589912Abstract: A first aspect of the disclosure provides for an integrated circuit structure. The integrated circuit structure may comprise a first metal structure in a first dielectric layer on a substrate in a crack stop area; and a first crack stop structure in a second dielectric layer, the first crack stop structure being over the first metal structure and including: a first metal fill contacting the first metal structure; and an air seam substantially separating the first metal fill and the second dielectric layer.Type: GrantFiled: August 27, 2015Date of Patent: March 7, 2017Assignee: GLOBALFOUNDRIES INC.Inventors: Jim S. Liang, Atsushi Ogino, Stephen E. Greco, Roger A. Quon