Patents by Inventor Roger Stettner

Roger Stettner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140160460
    Abstract: A vehicular collision avoidance system comprising a system controller, pulsed laser transmitter, a number of independent ladar sensor units, a cabling infrastructure, internal memory, a scene processor, and a data communications port is presented herein. The described invention is capable of developing a 3-D scene, and object data for targets within the scene, from multiple ladar sensor units coupled to centralized LADAR-based Collision Avoidance System (CAS). Key LADAR elements are embedded within standard headlamp and taillight assemblies. Articulating LADAR sensors cover terrain coming into view around a curve, at the crest of a hill, or at the bottom of a dip. A central laser transmitter may be split into multiple optical outputs and guided through fibers to illuminate portions of the 360° field of view surrounding the vehicle. These fibers may also serve as amplifiers to increase the optical intensity provided by a single master laser.
    Type: Application
    Filed: February 12, 2014
    Publication date: June 12, 2014
    Applicant: Advanced Scientific Concepts, Inc.
    Inventors: Patrick Gilliland, Roger Stettner, Laurent Heughebaert, Barton M. Goldstein
  • Patent number: 8743176
    Abstract: A hybrid three dimensional imaging camera comprises a 2-D video camera utilizing a focal plane array visible light detector and a 3-D flash laser radar utilizing an infrared focal plane array detector. The device is capable of capturing a complete 3-D scene from a single point of view. A production system combining multiple hybrid 3-D cameras around a subject provides 3-D solid models of an object or scene in the common field of view.
    Type: Grant
    Filed: May 19, 2010
    Date of Patent: June 3, 2014
    Assignee: Advanced Scientific Concepts, Inc.
    Inventors: Roger Stettner, Brad Short, Patrick Gilliland, Tom Laux, Laurent Heughebaert
  • Patent number: 8692980
    Abstract: A vehicular collision avoidance system comprising a system controller, pulsed laser transmitter, a number of independent ladar sensor units, a cabling infrastructure, internal memory, a scene processor, and a data communications port is presented herein. The described invention is capable of developing a 3-D scene, and object data for targets within the scene, from multiple ladar sensor units coupled to centralized LADAR-based Collision Avoidance System (CAS). Key LADAR elements are embedded within standard headlamp and taillight assemblies. Articulating LADAR sensors cover terrain coming into view around a curve, at the crest of a hill, or at the bottom of a dip. A central laser transmitter may be split into multiple optical outputs and guided through fibers to illuminate portions of the 360° field of view surrounding the vehicle. These fibers may also serve as amplifiers to increase the optical intensity provided by a single master laser.
    Type: Grant
    Filed: October 31, 2011
    Date of Patent: April 8, 2014
    Assignee: Advanced Scientific Concepts, Inc.
    Inventors: Patrick Gilliland, Roger Stettner, Laurent Heughebaert, Bart Goldstein
  • Publication number: 20140063200
    Abstract: The present invention tracks or locates small moving objects, or generates a 3-D frame of data by using 3-D focal plane arrays with low laser energy and few mechanically moving parts. The invention may be used to determine the direction of a laser designating a target, for target tracking, used as a 3-D movie/video camera or used to provide data for autonomous navigation.
    Type: Application
    Filed: November 8, 2013
    Publication date: March 6, 2014
    Applicant: ADVANCED SCIENTIFIC CONCEPTS, INC.
    Inventors: Roger STETTNER, Howard W. BAILEY
  • Publication number: 20140049616
    Abstract: The present invention determines the dimensions and volume of an object by using a novel 3-D camera that measures the distance to every reflective point in its field of view with a single pulse of light. The distance is computed by the time of flight of the pulse to each camera pixel. The accuracy of the measurement is augmented by capture of the laser pulse shape in each camera pixel. The camera can be used on an assembly line to develop quality control data for manufactured objects or on a moving or stationary system that weighs as well as dimensions the objects. The device can also ascertain the minimum size of a box required to enclose an object.
    Type: Application
    Filed: October 28, 2013
    Publication date: February 20, 2014
    Inventor: Roger STETTNER
  • Patent number: 8606496
    Abstract: The present invention tracks or locates small moving objects, or generates a 3-D frame of data by using 3-D focal plane arrays with low laser energy and few mechanically moving parts. The invention may be used to determine the direction of a laser designating a target, for target tracking, used as a 3-D movie/video camera or used to provide data for autonomous navigation.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: December 10, 2013
    Assignee: Advanced Scientific Concepts Inc.
    Inventors: Roger Stettner, Howard W. Bailey
  • Patent number: 8599303
    Abstract: The present invention determines the dimensions and volume of an object by using a novel 3-D camera that measures the distance to every reflective point in its field of view with a single pulse of light. The distance is computed by the time of flight of the pulse to each camera pixel. The accuracy of the measurement is augmented by capture of the laser pulse shape in each camera pixel. The camera can be used on an assembly line to develop quality control data for manufactured objects or on a moving or stationary system that weighs as well as dimensions the objects. The device can also ascertain the minimum size of a box required to enclose an object.
    Type: Grant
    Filed: October 22, 2012
    Date of Patent: December 3, 2013
    Assignee: Advanced Scientific Concepts, Inc.
    Inventor: Roger Stettner
  • Publication number: 20130286409
    Abstract: The present invention determines the dimensions and volume of an object by using a novel 3-D camera that measures the distance to every reflective point in its field of view with a single pulse of light. The distance is computed by the time of flight of the pulse to each camera pixel. The accuracy of the measurement is augmented by capture of the laser pulse shape in each camera pixel. The camera can be used on an assembly line to develop quality control data for manufactured objects or on a moving or stationary system that weighs as well as dimensions the objects. The device can also ascertain the minimum size of a box required to enclose an object.
    Type: Application
    Filed: October 22, 2012
    Publication date: October 31, 2013
    Inventor: Roger STETTNER
  • Publication number: 20130242283
    Abstract: A lightweight, low volume, inexpensive LADAR sensor incorporating 3-D focal plane arrays is adapted specifically for personal electronic appliances. The present invention generates, at high speed, 3-D image maps and object data at short to medium ranges. The techniques and structures described may be used to extend the range of long range systems as well, though the focus is on compact, short to medium range ladar sensors suitable for use in personal electronic devices. 3-D focal plane arrays are used in a variety of physical configurations to provide useful new capabilities to a variety of personal electronic appliances.
    Type: Application
    Filed: March 16, 2012
    Publication date: September 19, 2013
    Applicant: Advanced Scientific Concepts, Inc.
    Inventors: Howard Bailey, Patrick Gilliland, Barton Goldstein, Laurent Heughebaert, Brad Short, Joseph Spagnolia, Roger Stettner
  • Publication number: 20130128257
    Abstract: A three dimensional imaging camera comprises a system controller, pulsed laser transmitter, receiving optics, an infrared focal plane array light detector, and an image processor. The described invention is capable of developing a complete 3-D scene from a single point of view. The 3-D imaging camera utilizes a pulsed laser transmitter capable of illuminating an entire scene with a single high power flash of light. The 3-D imaging camera employs a system controller to trigger a pulse of high intensity light from the pulsed laser transmitter, and counts the time from the start of the transmitter light pulse. The light reflected from the illuminated scene impinges on a receiving optics and is detected by a focal plane array optical detector. An image processor applies image enhancing algorithms to improve the image quality and develop object data for subjects in the field of view of the flash ladar imaging camera.
    Type: Application
    Filed: September 14, 2012
    Publication date: May 23, 2013
    Applicant: ADVANCED SCIENTIFIC CONCEPTS INC.
    Inventors: Roger Stettner, Howard Bailey, Brad Short, Laurent Hueghebaert, Patrick Gilliland
  • Publication number: 20130110390
    Abstract: The present invention tracks or locates small moving objects, or generates a 3-D frame of data by using 3-D focal plane arrays with low laser energy and few mechanically moving parts. The invention may be used to determine the direction of a laser designating a target, for target tracking, used as a 3-D movie/video camera or used to provide data for autonomous navigation.
    Type: Application
    Filed: December 21, 2012
    Publication date: May 2, 2013
    Inventors: Roger STETTNER, Howard W. BAILEY
  • Patent number: 8358404
    Abstract: The present invention tracks or locates small moving objects, or generates a 3-D frame of data by using 3-D focal plane arrays with low laser energy and few mechanically moving parts. The invention may be used to determine the direction of a laser designating a target, for target tracking, used as a 3-D movie/video camera or used to provide data for autonomous navigation.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: January 22, 2013
    Assignee: Advanced Scientific Concepts Inc.
    Inventors: Roger Stettner, Howard W. Bailey
  • Patent number: 8294809
    Abstract: The present invention determines the dimensions and volume of an object by using a novel 3-D camera that measures the distance to every reflective point in its field of view with a single pulse of light. The distance is computed by the time of flight of the pulse to each camera pixel. The accuracy of the measurement is augmented by capture of the laser pulse shape in each camera pixel. The camera can be used on an assembly line to develop quality control data for manufactured objects or on a moving or stationary system that weighs as well as dimensions the objects. The device can also ascertain the minimum size of a box required to enclose an object.
    Type: Grant
    Filed: October 1, 2009
    Date of Patent: October 23, 2012
    Assignee: Advanced Scientific Concepts, Inc.
    Inventor: Roger Stettner
  • Publication number: 20120261516
    Abstract: A system for landing or docking a mobile platform is enabled by a flash LADAR sensor having an adaptive controller with Automatic Gain Control (AGC). Range gating in the LADAR sensor penetrates through diffuse reflectors. The LADAR sensor adapted for landing/approach comprises a system controller, pulsed laser transmitter, transmit optics, receive optics, a focal plane array of detectors, a readout integrated circuit, camera support electronics and image processor, an image analysis and bias calculation processor, and a detector array bias control circuit. The system is capable of developing a complete 3-D scene from a single point of view.
    Type: Application
    Filed: April 16, 2012
    Publication date: October 18, 2012
    Inventors: Patrick Gilliland, Bob Koseluk, Steve Penniman, Brad Short, Joe Spagnolia, Roger Stettner
  • Publication number: 20120249999
    Abstract: The present invention tracks or locates small moving objects, or generates a 3-D frame of data by using 3-D focal plane arrays with low laser energy and few mechanically moving parts. The invention may be used to determine the direction of a laser designating a target, for target tracking, used as a 3-D movie/video camera or used to provide data for autonomous navigation.
    Type: Application
    Filed: March 5, 2012
    Publication date: October 4, 2012
    Inventors: Roger Stettner, Howard W. Bailey
  • Publication number: 20120154785
    Abstract: A vehicular collision avoidance system comprising a system controller, pulsed laser transmitter, a number of independent ladar sensor units, a cabling infrastructure, internal memory, a scene processor, and a data communications port is presented herein. The described invention is capable of developing a 3-D scene, and object data for targets within the scene, from multiple ladar sensor units coupled to centralized LADAR-based Collision Avoidance System (CAS). Key LADAR elements are embedded within standard headlamp and taillight assemblies. Articulating LADAR sensors cover terrain coming into view around a curve, at the crest of a hill, or at the bottom of a dip. A central laser transmitter may be split into multiple optical outputs and guided through fibers to illuminate portions of the 360° field of view surrounding the vehicle. These fibers may also serve as amplifiers to increase the optical intensity provided by a single master laser.
    Type: Application
    Filed: October 31, 2011
    Publication date: June 21, 2012
    Inventors: Patrick Gilliland, Roger Stettner, Laurent Heuhebaert, Bart Goldstein
  • Patent number: 8130367
    Abstract: By using 3-D focal plane arrays, the present invention tracks or locates small moving objects, or generates a 3-D frame of data with minimum laser energy and a minimum of mechanically moving parts. In another embodiment the invention is used to determine the direction of a laser designating a target with a minimum of moving parts. In another embodiment the invention is used as a 3-D movie/video camera. In yet another embodiment the device is used to provide data for autonomous navigation.
    Type: Grant
    Filed: December 8, 2006
    Date of Patent: March 6, 2012
    Inventors: Roger Stettner, Howard W. Bailey
  • Publication number: 20100309288
    Abstract: A hybrid three dimensional imaging camera comprises a 2-D video camera utilizing a focal plane array visible light detector and a 3-D flash laser radar utilizing an infrared focal plane array detector. The device is capable of capturing a complete 3-D scene from a single point of view. A production system combining multiple hybrid 3-D cameras around a subject provides 3-D solid models of an object or scene in the common field of view.
    Type: Application
    Filed: May 19, 2010
    Publication date: December 9, 2010
    Inventors: Roger STETTNER, Brad Short, Patrick Gilliland, Tom Laux
  • Publication number: 20100208039
    Abstract: The present invention determines the dimensions and volume of an object by using a novel 3-D camera that measures the distance to every reflective point in its field of view with a single pulse of light. The distance is computed by the time of flight of the pulse to each camera pixel. The accuracy of the measurement is augmented by capture of the laser pulse shape in each camera pixel. The camera can be used on an assembly line to develop quality control data for manufactured objects or on a moving or stationary system that weighs as well as dimensions the objects. The device can also ascertain the minimum size of a box required to enclose an object.
    Type: Application
    Filed: October 1, 2009
    Publication date: August 19, 2010
    Inventor: Roger STETTNER
  • Publication number: 20090115994
    Abstract: By using 3-D focal plane arrays, the present invention tracks or locates small moving objects, or generates a 3-D frame of data with minimum laser energy and a minimum of mechanically moving parts. In another embodiment the invention is used to determine the direction of a laser designating a target with a minimum of moving parts. In another embodiment the invention is used as a 3-D movie/video camera. In yet another embodiment the device is used to provide data for autonomous navigation.
    Type: Application
    Filed: December 8, 2006
    Publication date: May 7, 2009
    Inventors: Roger Stettner, Howard W. Bailey