Patents by Inventor Rohit Iyer

Rohit Iyer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200145150
    Abstract: Implementations described herein are directed to satellite transmitters and receivers for applying OFDM-like signaling in broadband satellite transmissions. In such systems, one or more data signals may be shaped and composited into a composite data signal at an OFDM-like transmitter for transmission over a satellite channel. The data signals that are carried over the satellite channel by the composited signal may have their own carrier, and each signal may carry multiple OFDM subcarriers. Further implementations are directed to correcting for distortion in satellite communications systems that utilize OFDM-like signaling.
    Type: Application
    Filed: January 6, 2020
    Publication date: May 7, 2020
    Inventors: Bassel F. Beidas, Rohit Iyer Seshadri
  • Patent number: 10530540
    Abstract: Implementations described herein are directed to satellite transmitters and receivers for applying OFDM-like signaling in broadband satellite transmissions. In such systems, one or more data signals may be shaped and composited into a composite data signal at an OFDM-like transmitter for transmission over a satellite channel. The data signals that are carried over the satellite channel by the composited signal may have their own carrier, and each signal may carry multiple OFDM subcarriers. Further implementations are directed to correcting for distortion in satellite communications systems that utilize OFDM-like signaling.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: January 7, 2020
    Assignee: HUGHES NETWORK SYSTEMS, LLC
    Inventors: Bassel F. Beidas, Rohit Iyer Seshadri
  • Patent number: 10237016
    Abstract: A receiver, transmitter and system are programmed to communicate based on a signal including a plurality of signal components associated respectively with a plurality of subcarriers over a communications channel. The receiver is programmed to determine, from the plurality of subcarriers, a subcarrier subject to interference and erase the signal component associated with the subcarrier subject to interference. The receiver is further programmed to reconstruct the signal based on the plurality of first signal components excluding the erased first signal component.
    Type: Grant
    Filed: December 9, 2016
    Date of Patent: March 19, 2019
    Assignee: Hughes Network Systems, LLC
    Inventors: Bassel F. Beidas, Rohit Iyer Seshadri, Lin-Nan Lee, Liping Chen
  • Patent number: 10103804
    Abstract: An approach for optimizing power utilization of a satellite transponder, and thereby optimizing achievable modulation/coding schemes and data rates for terminals across the transponder beam, is provided. A signal power level is allocated to each of a plurality of carriers. The plurality of carriers are to be transmitted within a downlink beam via a transponder, each of the carriers is associated with a region of the beam, and the total power allocated to the carriers does not exceed a desired aggregate power level for the transponder. The signal power allocated to each carrier is determined relative to a gain realizable by satellite terminals within the respective beam region and assigned to receive the respective carrier, and the realizable gain of the terminals is based on locations within the beam. The signal power level allocated to each carrier is different from the power allocated to the other carriers.
    Type: Grant
    Filed: December 31, 2014
    Date of Patent: October 16, 2018
    Assignee: Hughes Network Systems, LLC
    Inventors: Russell Fang, Rohit Iyer Seshadri
  • Patent number: 10020965
    Abstract: An approach for increasing transmission throughput of a non-linear wireless channel, and efficient decoding of the transmitted signal via a simplified receiver, is provided. A signal reflects a source signal, and includes linear inter-symbol interference based on a faster-than-Nyquist signaling rate and a tight frequency roll-off, and non-linear interference based on high-power amplification for transmission over the wireless channel. The signal is received over a non-linear wireless channel, and is processed via a plurality of decoding iterations. A set of soft information of a current decoding iteration is generated based on a current estimate of the source signal and a final set of soft information from a previous decoding iteration. The current estimate of the source signal is based on an estimate of the linear ISI and the non-linear interference, which is based on the final set of soft information from the previous decoding iteration.
    Type: Grant
    Filed: July 20, 2017
    Date of Patent: July 10, 2018
    Assignee: Hughes Network Systems, LLC
    Inventors: Bassel Beidas, Rohit Iyer Seshadri, Mustafa Eroz, Lin-Nan Lee
  • Publication number: 20180175978
    Abstract: Implementations described herein are directed to satellite transmitters and receivers for applying OFDM-like signaling in broadband satellite transmissions. In such systems, one or more data signals may be shaped and composited into a composite data signal at an OFDM-like transmitter for transmission over a satellite channel. The data signals that are carried over the satellite channel by the composited signal may have their own carrier, and each signal may carry multiple OFDM subcarriers. Further implementations are directed to correcting for distortion in satellite communications systems that utilize OFDM-like signaling.
    Type: Application
    Filed: December 20, 2017
    Publication date: June 21, 2018
    Inventors: BASSEL F. BEIDAS, ROHIT IYER SESHADRI
  • Publication number: 20180115390
    Abstract: A receiver, transmitter and system are programmed to communicate based on a signal including a plurality of signal components associated respectively with a plurality of subcarriers over a communications channel. The receiver is programmed to determine, from the plurality of subcarriers, a subcarrier subject to interference and erase the signal component associated with the subcarrier subject to interference. The receiver is further programmed to reconstruct the signal based on the plurality of first signal components excluding the erased first signal component.
    Type: Application
    Filed: December 9, 2016
    Publication date: April 26, 2018
    Inventors: Bassel F. Beidas, Rohit Iyer Seshadri, Lin-Nan Lee, Liping Chen
  • Publication number: 20170324590
    Abstract: An approach for increasing transmission throughput of a non-linear wireless channel, and efficient decoding of the transmitted signal via a simplified receiver, is provided. A signal reflects a source signal, and includes linear inter-symbol interference based on a faster-than-Nyquist signaling rate and a tight frequency roll-off, and non-linear interference based on high-power amplification for transmission over the wireless channel. The signal is received over a non-linear wireless channel, and is processed via a plurality of decoding iterations. A set of soft information of a current decoding iteration is generated based on a current estimate of the source signal and a final set of soft information from a previous decoding iteration. The current estimate of the source signal is based on an estimate of the linear ISI and the non-linear interference, which is based on the final set of soft information from the previous decoding iteration.
    Type: Application
    Filed: July 20, 2017
    Publication date: November 9, 2017
    Inventors: Bassel BEIDAS, Rohit Iyer SESHADRI, Mustafa EROZ, Lin-Nan LEE
  • Patent number: 9742599
    Abstract: New partial response signaling systems and methods for high spectral efficiency communications are described. In a first implementation, a communication system includes a partial response signaling transmitter and a nonlinear satellite transponder. The partial response signaling transmitter includes a partial response transmit filter configured to convert complex-valued data symbols to a transmit signal using a partial response pulse shaping function; and a modulator configured to modulate the transmit signal onto a carrier wave. The transponder receives and non-linearly amplifies the modulated transmit signal for broadcast to receivers.
    Type: Grant
    Filed: January 19, 2016
    Date of Patent: August 22, 2017
    Assignee: Hughes Network Systems, LLC
    Inventors: Rohit Iyer Seshadri, Bassel F. Beidas
  • Patent number: 9716602
    Abstract: An approach for increasing transmission throughput of a non-linear wireless channel, and efficient decoding of the transmitted signal via a simplified receiver, is provided. A signal reflects a source signal, and includes linear inter-symbol interference based on a faster-than-Nyquist signaling rate and a tight frequency roll-off, and non-linear interference based on high-power amplification for transmission over the wireless channel. The signal is received over a non-linear wireless channel, and is processed via a plurality of decoding iterations. A set of soft information of a current decoding iteration is generated based on a current estimate of the source signal and a final set of soft information from a previous decoding iteration. The current estimate of the source signal is based on an estimate of the linear ISI and the non-linear interference, which is based on the final set of soft information from the previous decoding iteration.
    Type: Grant
    Filed: July 8, 2014
    Date of Patent: July 25, 2017
    Assignee: Hughes Network Systems, LLC
    Inventors: Bassel Beidas, Rohit Iyer Seshadri, Mustafa Eroz, Lin-Nan Lee
  • Publication number: 20170207934
    Abstract: New partial response signaling systems and methods for high spectral efficiency communications are described. In a first implementation, a communication system includes a partial response signaling transmitter and a nonlinear satellite transponder. The partial response signaling transmitter includes a partial response transmit filter configured to convert complex-valued data symbols to a transmit signal using a partial response pulse shaping function; and a modulator configured to modulate the transmit signal onto a carrier wave. The transponder receives and non-linearly amplifies the modulated transmit signal for broadcast to receivers.
    Type: Application
    Filed: January 19, 2016
    Publication date: July 20, 2017
    Applicant: Hughes Network Systems, LLC
    Inventors: Rohit Iyer Seshadri, Bassel F. Beidas
  • Patent number: 9634870
    Abstract: An approach is provided for increasing transmission throughput rates for a source signal transmitted over a wireless channel, applying faster-than-Nyquist (FTN) signaling rates combined with tight frequency roll-off to the a source signal. A receiver is provided that compensates for ISI effects induced by the FTN rate and tight frequency roll-off, where the complexity of the receiver grows only linearly with the interference memory. The receiver comprises an equalizer configured to compensate for the ISI effects, and a decoder configured to decode the output of the equalizer to determine and regenerate the source signal. The receiver processes the received signal via a plurality of processing iterations. For one processing iteration, the decoder generates a set of a posteriori soft information based on the output of the equalizer, and the equalizer uses the a posteriori soft information as a priori soft information for a subsequent processing iteration.
    Type: Grant
    Filed: January 26, 2016
    Date of Patent: April 25, 2017
    Assignee: Hughes Network Systems, LLC
    Inventors: Bassel Beidas, Rohit Iyer Seshadri, Mustafa Eroz, Lin-Nan Lee
  • Patent number: 9614554
    Abstract: An approach for improved compensation for nonlinear distortion in multicarrier satellite systems is provided. Source reflecting encoded and modulated sequences of source data symbols are received. Each source signal is predistorted, and a transmit filter is applied to each predistorted source signal. Each filtered signal is translated to a carrier frequency, and the translated signals are combined into a composite signal for transmission via a multicarrier transponder. The final predistorted version of each source signal is generated via an iterative process of a number of stages, wherein, for a given stage and for each source signal, the process comprises: receiving a prior predistorted version of each source signal from a preceding stage; processing each prior predistorted source signal based on all of the received prior predistorted source signals, wherein the processing is performed based on a characterization of one or more characteristics of the multicarrier satellite transponder.
    Type: Grant
    Filed: June 12, 2015
    Date of Patent: April 4, 2017
    Assignee: Hughes Network Systems, LLC
    Inventors: Bassel Beidas, Rohit Iyer Seshadri, Neal Becker
  • Patent number: 9515723
    Abstract: A signal transmission approach comprises encoding a source signal (comprising source symbols) to generate a corresponding encoded signal. The encoded signal is modulated by mapping each source symbol to a respective signal constellation point of an applied signal constellation to generate a modulated signal. The modulated signal is pre-distorted based on a distortion estimate to generate a pre-distorted signal. The pre-distorted signal is filtered to generate a filtered signal. The filtered signal is frequency translated and amplified to generate a transmission signal for transmission via an uplink channel of a satellite communications system. To increase throughput, the source signal is processed through the apparatus and the resulting transmission signal is generated at a Faster-than-Nyquist (FTN) symbol rate and with a tight frequency roll-off. The modulated signal is pre-distorted based on a distortion estimate relating to the nonlinearity and the filters applied before and/or after the pre-distorter.
    Type: Grant
    Filed: November 30, 2015
    Date of Patent: December 6, 2016
    Assignee: Hughes Network Systems, LLC
    Inventors: Bassel Beidas, Rohit Iyer Seshadri, Mustafa Eroz, Lin-Nan Lee
  • Publication number: 20160191145
    Abstract: An approach for optimizing power utilization of a satellite transponder, and thereby optimizing achievable modulation/coding schemes and data rates for terminals across the transponder beam, is provided. A signal power level is allocated to each of a plurality of carriers. The plurality of carriers are to be transmitted within a downlink beam via a transponder, each of the carriers is associated with a region of the beam, and the total power allocated to the carriers does not exceed a desired aggregate power level for the transponder. The signal power allocated to each carrier is determined relative to a gain realizable by satellite terminals within the respective beam region and assigned to receive the respective carrier, and the realizable gain of the terminals is based on locations within the beam. The signal power level allocated to each carrier is different from the power allocated to the other carriers.
    Type: Application
    Filed: December 31, 2014
    Publication date: June 30, 2016
    Inventors: Russell FANG, Rohit Iyer SESHADRI
  • Publication number: 20160164702
    Abstract: An approach is provided for increasing transmission throughput rates for a source signal transmitted over a wireless channel, applying faster-than-Nyquist (FTN) signaling rates combined with tight frequency roll-off to the a source signal. A receiver is provided that compensates for ISI effects induced by the FTN rate and tight frequency roll-off, where the complexity of the receiver grows only linearly with the interference memory. The receiver comprises an equalizer configured to compensate for the ISI effects, and a decoder configured to decode the output of the equalizer to determine and regenerate the source signal. The receiver processes the received signal via a plurality of processing iterations. For one processing iteration, the decoder generates a set of a posteriori soft information based on the output of the equalizer, and the equalizer uses the a posteriori soft information as a priori soft information for a subsequent processing iteration.
    Type: Application
    Filed: January 26, 2016
    Publication date: June 9, 2016
    Inventors: Bassel BEIDAS, Rohit Iyer SESHADRI, Mustafa EROZ, Lin-Nan LEE
  • Publication number: 20160087712
    Abstract: A signal transmission approach comprises encoding a source signal (comprising source symbols) to generate a corresponding encoded signal. The encoded signal is modulated by mapping each source symbol to a respective signal constellation point of an applied signal constellation to generate a modulated signal. The modulated signal is pre-distorted based on a distortion estimate to generate a pre-distorted signal. The pre-distorted signal is filtered to generate a filtered signal. The filtered signal is frequency translated and amplified to generate a transmission signal for transmission via an uplink channel of a satellite communications system. To increase throughput, the source signal is processed through the apparatus and the resulting transmission signal is generated at a Faster-than-Nyquist (FTN) symbol rate and with a tight frequency roll-off. The modulated signal is pre-distorted based on a distortion estimate relating to the nonlinearity and the filters applied before and/or after the pre-distorter.
    Type: Application
    Filed: November 30, 2015
    Publication date: March 24, 2016
    Inventors: Bassel BEIDAS, Rohit Iyer SESHADRI, Mustafa EROZ, Lin-Nan LEE
  • Patent number: 9246717
    Abstract: An approach is provided for increasing transmission throughput rates for a source signal transmitted over a wireless channel, applying faster-than-Nyquist (FTN) signaling rates combined with tight frequency roll-off to the a source signal. A receiver is provided that compensates for ISI effects induced by the FTN rate and tight frequency roll-off, where the complexity of the receiver grows only linearly with the interference memory. The receiver comprises an equalizer configured to compensate for the ISI effects, and a decoder configured to decode the output of the equalizer to determine and regenerate the source signal. The receiver processes the received signal via a plurality of processing iterations. For one processing iteration, the decoder generates a set of a posteriori soft information based on the output of the equalizer, and the equalizer uses the a posteriori soft information as a priori soft information for a subsequent processing iteration.
    Type: Grant
    Filed: June 30, 2014
    Date of Patent: January 26, 2016
    Assignee: Hughes Network Systems, LLC
    Inventors: Bassel Beidas, Rohit Iyer Seshadri, Mustafa Eroz, Lin-Nan Lee
  • Publication number: 20150381392
    Abstract: An approach is provided for increasing transmission throughput rates for a source signal transmitted over a wireless channel, applying faster-than-Nyquist (FTN) signaling rates combined with tight frequency roll-off to the a source signal. A receiver is provided that compensates for ISI effects induced by the FTN rate and tight frequency roll-off, where the complexity of the receiver grows only linearly with the interference memory. The receiver comprises an equalizer configured to compensate for the ISI effects, and a decoder configured to decode the output of the equalizer to determine and regenerate the source signal. The receiver processes the received signal via a plurality of processing iterations. For one processing iteration, the decoder generates a set of a posteriori soft information based on the output of the equalizer, and the equalizer uses the a posteriori soft information as a priori soft information for a subsequent processing iteration.
    Type: Application
    Filed: June 30, 2014
    Publication date: December 31, 2015
    Inventors: Bassel BEIDAS, Rohit Iyer SESHADRI, Mustafa EROZ, Lin-Nan LEE
  • Patent number: 9203450
    Abstract: A signal transmission approach comprises encoding a source signal (comprising a plurality of source symbols) to generate a corresponding encoded signal. The encoded signal is modulated by mapping each source symbol to a respective signal constellation point of an applied signal constellation to generate a modulated signal. The modulated signal is pre-distorted based on a distortion estimate to generate a pre-distorted signal. The pre-distorted signal is filtered to generate a filtered signal. The filtered signal is frequency translated and amplified to generate a transmission signal for transmission via an uplink channel of a satellite communications system. To increase throughput, the source signal is processed through the apparatus and the resulting transmission signal is generated at a Faster-than-Nyquist (FTN) symbol rate and with a tight frequency roll-off.
    Type: Grant
    Filed: October 8, 2014
    Date of Patent: December 1, 2015
    Assignee: Hughes Network Systems, LLC
    Inventors: Bassel Beidas, Rohit Iyer Seshadri, Mustafa Eroz, Lin-Nan Lee