Patents by Inventor Rolf Juergen WEESE

Rolf Juergen WEESE has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240090849
    Abstract: The present invention relates to multispectral imaging. In order to improve an identification of relevant multispectral material transitions (in particular caused by injected contrast agent), an apparatus is proposed to use the local maxima of the variances and/or covariances of the intensities of the multi-channel images to locate material transitions. In comparison to gradient vectors, the local variance is not directed and not prone to noise. An alternative apparatus is proposed to use the local covariance deficits of the intensities of the multi-channel images to locate material transitions. The proposed alternative approach is independent of spatial drifts across the image volume.
    Type: Application
    Filed: November 28, 2021
    Publication date: March 21, 2024
    Inventors: RAFAEL WIEMKER, LIRAN GOSHEN, HANNES NICKISCH, CLAAS BONTUS, TOM BROSCH, JOCHEN PETERS, ROLF JÜRGEN WEESE
  • Publication number: 20240021320
    Abstract: A system and method for training a deep learning network with previously read image studies to provide a prioritized worklist of unread image studies. The method includes collecting training data including a plurality of previously read image studies, each of the previously read image studies including a classification of findings and radiologist-specific data. The method includes training the deep learning neural network with the training data to predict an urgency score for reading of an unread image study.
    Type: Application
    Filed: November 11, 2021
    Publication date: January 18, 2024
    Inventors: NICOLE SCHADEWALDT, ROLF JÜRGEN WEESE, MATTHIAS LENGA, AXEL SAALBACH, STEFFEN RENISCH, HEINRICH SCHULZ
  • Patent number: 11861839
    Abstract: A system and computer-implemented method are provided for preprocessing medical image data for machine learning. Image data is accessed which comprises an anatomical structure. The anatomical structure in the image data is segmented to obtain a segmentation of the anatomical structure as a delineated part of the image data. A grid is assigned to the delineated part of the image data, the grid representing a partitioning of an exterior and interior of the type of anatomical structure using grid lines, wherein said assigning comprises adapting the grid to fit the segmentation of the anatomical structure in the image data. A machine learning algorithm is then provided with an addressing to the image data in the delineated part on the basis of coordinates in the assigned grid. In some embodiments, the image data of the anatomical structure may be resampled using the assigned grid.
    Type: Grant
    Filed: May 8, 2019
    Date of Patent: January 2, 2024
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Rolf Jürgen Weese, Alexandra Groth, Tom Brosch, Jochen Peters
  • Patent number: 11830197
    Abstract: Systems and methods are provided for generating and using statistical data which is indicative of a difference in shape of a type of anatomical structure between images acquired by a first imaging modality and images acquired by a second imaging modality. This statistical data may then be used to modify a first segmentation of the anatomical structure which is obtained from an image acquired by the first imaging modality so as to predict the shape of the anatomical structure in the second imaging modality, or in general, to generate a second segmentation of the anatomical structure as it may appear in the second imaging modality based on the statistical data and the first segmentation.
    Type: Grant
    Filed: June 15, 2022
    Date of Patent: November 28, 2023
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Rolf Jürgen Weese, Alexandra Groth, Jochen Peters
  • Patent number: 11769599
    Abstract: A system and method are provided for use in evaluating a clinical guideline which is represented in a machine readable version by a decision tree comprising at least one node and a decision rule associated with the node. The decision rule comprises at least one variable representing a biomedical quantity. The biomedical quantity is extracted from the patient data using an ontology which defines concepts and their relationships in a medical domain of the clinical guideline and which thereby relates the variable of the decision rule to the patient data. If said extraction is not possible, a view of the patient data is presented to the user to enable the user to determine the biomedical quantity from the view. Advantageously, the user is assisted in evaluating the clinical guideline even when it is not possible to automatically extract the biomedical quantity from the patient data.
    Type: Grant
    Filed: June 27, 2017
    Date of Patent: September 26, 2023
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Tilman Wekel, Alexandra Groth, Rolf Jürgen Weese
  • Publication number: 20230248996
    Abstract: The present application describes a computing system, a computer readable medium, and/or related method for supporting decision making in adaptive therapy. An input interface of receives an input image. A machine learning module predicts, based at least in part on the input image, a dose distribution associated with a first planning technique or a first treatment modality. A comparator compares a planned dose distribution as per a current treatment plan with the predicted dose distribution, to obtain a comparison result. The comparison result enables a user to gauge whether an actual re-planning would yield a dosimetric benefit before committing time or computational resources.
    Type: Application
    Filed: July 5, 2021
    Publication date: August 10, 2023
    Inventors: MARIA LUIZA BONDAR, ROLF JÜRGEN WEESE, TORBJOERN VIK, TOM BROSCH, JENS WIEGERT, HARALD SEPP HEESE
  • Patent number: 11669636
    Abstract: A system (100) and computer-implemented method are provided for data collection for distributed machine learning of a machine learnable model. A privacy policy data (050) is provided defining computer-readable criteria for limiting a selection of medical image data (030) to a subset of the medical image data to obfuscate an identity of the at least one patient. The medical image data is selected based on the computer-readable criteria to obtain privacy policy-compliant training data (060) for transmission to another entity. The system and method enable medical data collection at clinical sites without requiring manual oversight, and enables such selections to be made automatically, e.g., based on a request for medical image data which may be received from outside of the clinical site.
    Type: Grant
    Filed: March 10, 2020
    Date of Patent: June 6, 2023
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Arne Ewald, Tim Nielsen, Karsten Sommer, Irina Waechter-Stehle, Christophe Michael Jean Schülke, Frank Michael Weber, Rolf Jürgen Weese, Jochen Peters
  • Publication number: 20230074125
    Abstract: Disclosed herein is a medical system (100, 300) comprising a display (112) and a user interface (114). The execution of machine executable instructions (120) causes a processor (104) to: receive (200) three-dimensional medical image data (122) of an anatomical structure (128, 322); receive (202) a three-dimensional segmentation (124) with one or more reference locations (800); display (204) at least one two-dimensional slice (126) of the three-dimensional medical image data; render (206) a cross section (134) of the three-dimensional segmentation, provide (208) a control element (130) of the user interface that is configured for receiving a one-dimensional position of the at least one reference location along a predetermined one-dimensional path (806); receive (210) the one-dimensional position (137) from the control element; adjust (212) the three-dimensional segmentation (124) using the one-dimensional position; and update (214) the rendering of the cross section of the three-dimensional segmentation.
    Type: Application
    Filed: February 7, 2021
    Publication date: March 9, 2023
    Inventors: FRANK MICHAEL WEBER, JOCHEN PETERS, ROLF JÜRGEN WEESE
  • Publication number: 20230067146
    Abstract: Disclosed herein is a medical system (100, 300, 400) comprising a memory (110) storing machine executable instructions (120). The medical system further comprises an anatomical detection module (122). The anatomical detection module is configured for detecting an anatomical deviation in response to inputting tomographic medical scout image data (124). The anatomical detection module is configured for outputting a localization (126) of the anatomical deviation in the tomographic medical scout image data if the anatomical deviation is detected. The medical system further comprises a processor (104) configured for controlling the medical system.
    Type: Application
    Filed: January 26, 2021
    Publication date: March 2, 2023
    Inventors: Charles Loeb TRUWIT, Rolf Juergen WEESE, Guenter Zeitler
  • Publication number: 20230011809
    Abstract: The invention relates to a system and computer-implemented method for enabling correction of a segmentation of an anatomical structure in 3D image data. The segmentation may be provided by a mesh which is applied to the 3D image data to segment the anatomical structure. The correction may for example involve a user directly or indirectly selecting a mesh part, such as a mesh point, that needs to be corrected. The behaviour of the correction, e.g., in terms of direction, radius/neighbourhood or strength, may then be dependent on the mesh normal direction, and in some embodiments, on a difference between the mesh normal direction and the orientation of the viewing plane.
    Type: Application
    Filed: December 21, 2020
    Publication date: January 12, 2023
    Inventors: ALEXANDRA GROTH, FRANK MICHAEL WEBER, JOCHEN PETERS, ROLF JÜRGEN WEESE
  • Publication number: 20230001236
    Abstract: The invention relates to a system for determining a radiation therapy plan for a radiation therapy system (100), comprising a multi-leaf collimator. The radiation therapy plan determination system (110) comprises a therapy system characteristics providing unit (111), wherein the characteristics comprise possible leaf positions and possible radiation fluence values, a planning objectives providing unit (112), wherein the planning objectives are indicative of a desired therapeutic radiation dose distribution, an optimization function providing unit (113), wherein the optimization function is indicative of a deviation of a radiation dose distribution from the planning objectives and of an uncertainty of the radiation dose distribution at edges of the possible apertures, and a therapy plan optimization unit (114) adapted to determine a sequence of possible apertures and possible radiation fluence values for which the optimization function is optimized.
    Type: Application
    Filed: November 25, 2020
    Publication date: January 5, 2023
    Inventors: HARALD SEPP HEESE, TORBJOERN VIK, ROLF JÜRGEN WEESE
  • Publication number: 20230005158
    Abstract: Some embodiments are directed to a segmentation of medical images. For example, a medical image may be registering to multiple atlas images after which a segmentation function may be applied. Multiple segmentation may be fused into a final overall segmentation. The atlas images may be selected on the basis of high segmentation quality or low registration quality.
    Type: Application
    Filed: December 7, 2020
    Publication date: January 5, 2023
    Inventors: MATTHIAS LENGA, TOBIAS WISSEL, ROLF JUERGEN WEESE
  • Patent number: 11468567
    Abstract: A system and method are provided for display of medical image data, with the display of the medical image data being determined on the basis of schematic image data of a schematic representation of an anatomical structure. The schematic representation may provide a particular view of the anatomical structure. The type of anatomical structure and the view of the anatomical structure provided by the schematic representation may be determined based on one or more image features in the schematic image data. The view may be characterized as a geometrically-defined perspective at which the anatomical structure is shown in the schematic representation. An output image may be generated showing the anatomical structure in the medical image data in accordance with said determined geometrically-defined perspective. A user may thus be provided with a display of medical image data which is easier to interpret having considered said schematic representation.
    Type: Grant
    Filed: February 25, 2019
    Date of Patent: October 11, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Alexandra Groth, Axel Saalbach, Rolf Jürgen Weese
  • Publication number: 20220319010
    Abstract: Systems and methods are provided for generating and using statistical data which is indicative of a difference in shape of a type of anatomical structure between images acquired by a first imaging modality and images acquired by a second imaging modality. This statistical data may then be used to modify a first segmentation of the anatomical structure which is obtained from an image acquired by the first imaging modality so as to predict the shape of the anatomical structure in the second imaging modality, or in general, to generate a second segmentation of the anatomical structure as it may appear in the second imaging modality based on the statistical data and the first segmentation.
    Type: Application
    Filed: June 15, 2022
    Publication date: October 6, 2022
    Inventors: Rolf Jürgen WEESE, Alexandra GROTH, Jochen PETERS
  • Patent number: 11439846
    Abstract: A system includes a computing system with a processor and computer readable storage medium with computer readable and executable instructions, including a radiation plan module, a radiation plan optimization module and a radiation plan visualization module. The processor is configured to execute the instructions, which causes the processor to construct and visually present, via a display monitor, a two-dimensional plot with three-dimensions of data from a radiation plan, and two dimensions along two axes of the plot and a third dimension represented through intensity.
    Type: Grant
    Filed: May 3, 2018
    Date of Patent: September 13, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Torbjoern Vik, Harald Sepp Heese, Christoph Neukirchen, Alfonso Agatino Isola, Rolf Juergen Weese
  • Publication number: 20220277457
    Abstract: In a method of segmenting a tubular feature in an image, a sequence of overlapping portions of the image are segmented using a trained model. The overlapping portions are positioned along the length of the tubular feature and combined to determine a segmentation of the tubular feature.
    Type: Application
    Filed: August 26, 2020
    Publication date: September 1, 2022
    Inventors: ROLF JUERGEN WEESE, DOMINIQUE SIU LI TIO, CHERYL KIMBERLEY SITAL, TOM BROSCH
  • Publication number: 20220240910
    Abstract: A system (SYS) for supporting a medical procedure, comprising an interface (IN) for receiving at least one medical input signal that describes a state of a target anatomy. A signal analyzer (SA) is configured to analyze the medical input signal to determine a time window for deployment of a cardio-vascular device (CL) to be deployed by a deployment.
    Type: Application
    Filed: July 28, 2020
    Publication date: August 4, 2022
    Inventors: Irina WAECHTER-STEHLE, Rolf Jürgen WEESE, Alexandra GROTH, Dirk SCHAEFER, Arne EWALD, Sven KROENKE
  • Patent number: 11393099
    Abstract: Systems and methods are provided for generating and using statistical data which is indicative of a difference in shape of a type of anatomical structure between images acquired by a first imaging modality and images acquired by a second imaging modality. This statistical data may then be used to modify a first segmentation of the anatomical structure which is obtained from an image acquired by the first imaging modality so as to predict the shape of the anatomical structure in the second imaging modality, or in general, to generate a second segmentation of the anatomical structure as it may appear in the second imaging modality based on the statistical data and the first segmentation.
    Type: Grant
    Filed: March 2, 2018
    Date of Patent: July 19, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Rolf Jürgen Weese, Alexandra Groth, Jochen Peters
  • Patent number: 11383103
    Abstract: The invention relates to a system for assisting in evaluating a contour of an anatomic structure (22) with respect to a dose distribution corresponding to a treatment plan for a radiation therapy treatment of a patient. The system comprises an evaluation unit particularly configured to evaluate the dose distribution in varying distances from the contour of the anatomic structure (22) to determine at least one point where the evaluated dose distribution fulfills a predetermined condition, and to determine the distance between the at least one point and the contour and/or to visualize the at least one point to a user of the system.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: July 12, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Rolf Jürgen Weese, Steffen Renisch, Hrishikesh Narayanrao Deshpande, Heinrich Schulz, Sven Kabus, Stéphane Allaire, Alfonso Agatino Isola, Christoph Neukirchen, Maria Luiza Bondar, Jens Wiegert
  • Publication number: 20220203124
    Abstract: The invention relates to a planning apparatus for planning a radiation therapy. A medical image, in which a target to be irradiated is indicated, is reformatted based on ray geometries to be used during the radiation therapy to be planned, resulting in several reformatted medical images. Radiation therapy parameters being indicative of intensities of rays 5 to be used for irradiating a target 4 are determined based on the reformatted medical images by using a neural network unit. This allows to determine high quality radiation therapy parameters and hence allows for an improved planning of a radiation therapy. In particular, radiation and absorptions physics can be captured better, which can lead to the improved quality.
    Type: Application
    Filed: December 22, 2021
    Publication date: June 30, 2022
    Inventors: Nick FLAESCHNER, Harald Sepp HEESE, Maria Luiza BONDAR, Kay SUN, Jens WIEGERT, Rolf Juergen WEESE