Patents by Inventor Romeo I. Mercado

Romeo I. Mercado has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11143847
    Abstract: A compact, small form factor optical system for cameras that provides multiple optical paths to capture images of an object field in different portions of the light spectrum. The optical system includes a front lens group that captures visible and near-infrared (NIR) light from an object field and refracts the light to a beam splitter that splits the visible light and the NIR light onto two paths. On the visible light path, a visible light lens group refracts the visible light to form an image of the object field at a visible light sensor. On the NIR light path, a NIR light lens group refracts the NIR light to form an image of the object field at an NIR light sensor. The optical system thus provides images of the object field at two sensor planes, one image in the visible spectrum and the other image in the NIR spectrum.
    Type: Grant
    Filed: September 26, 2018
    Date of Patent: October 12, 2021
    Assignee: Apple Inc.
    Inventor: Romeo I. Mercado
  • Patent number: 11112582
    Abstract: A folded telephoto lens system may include multiple lenses with refractive power and a light path folding element. Light entering the camera through lens(es) on a first path is refracted to the folding element, which changes direction of the light on to a second path with lens(es) that refract the light to form an image plane at a photosensor. At least one of the object side and image side surfaces of at least one of the lens elements may be aspheric. Total track length (TTL) of the lens system may be 14.0 mm or less. The lens system may be configured so that the telephoto ratio (TTL/f) is less than or equal to 1.0. Materials, radii of curvature, shapes, sizes, spacing, and aspheric coefficients of the optical elements may be selected to achieve quality optical performance and high image resolution in a small form factor camera.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: September 7, 2021
    Assignee: Apple Inc.
    Inventor: Romeo I. Mercado
  • Publication number: 20200026033
    Abstract: A folded telephoto lens system may include multiple lenses with refractive power and a light path folding element. Light entering the camera through lens(es) on a first path is refracted to the folding element, which changes direction of the light on to a second path with lens(es) that refract the light to form an image plane at a photosensor. At least one of the object side and image side surfaces of at least one of the lens elements may be aspheric. Total track length (TTL) of the lens system may be 14.0 mm or less. The lens system may be configured so that the telephoto ration (TTL/f) is less than or equal to 1.0. Materials, radii of curvature, shapes, sizes, spacing, and aspheric coefficients of the optical elements may be selected to achieve quality optical performance and high image resolution in a small form factor camera.
    Type: Application
    Filed: September 27, 2019
    Publication date: January 23, 2020
    Applicant: Apple Inc.
    Inventor: Romeo I. Mercado
  • Patent number: 10429614
    Abstract: A folded telephoto lens system may include multiple lenses with refractive power and a light path folding element. Light entering the camera through lens(es) on a first path is refracted to the folding element, which changes direction of the light on to a second path with lens(es) that refract the light to form an image plane at a photosensor. At least one of the object side and image side surfaces of at least one of the lens elements may be aspheric. Total track length (TTL) of the lens system may be 14.0 mm or less. The lens system may be configured so that the telephoto ration (TTL/f) is less than or equal to 1.0. Materials, radii of curvature, shapes, sizes, spacing, and aspheric coefficients of the optical elements may be selected to achieve quality optical performance and high image resolution in a small form factor camera.
    Type: Grant
    Filed: April 15, 2016
    Date of Patent: October 1, 2019
    Assignee: Apple Inc.
    Inventor: Romeo I. Mercado
  • Patent number: 10338344
    Abstract: A compact telephoto lens system that may be used in a small form factor cameras. The lens system may include five lens elements with refractive power. Alternatively, the lens system may include four lens elements with refractive power. At least one of the object side and image side surfaces of at least one of the lens elements is aspheric. Total track length (TTL) of the lens system may be 6.0 mm or less. Focal length f of the lens system may be at or about 7.0 mm (for example, within a range of 6.5-7.5 mm). Lens elements are selected and configured so that the telephoto ratio (TTL/f) satisfies the relation 0.74<TTL/f<1.0. Materials, radii of curvature, shapes, sizes, spacing, and aspheric coefficients of the lens elements may be selected to achieve quality optical performance and high image resolution in a small form factor telephoto camera.
    Type: Grant
    Filed: December 7, 2015
    Date of Patent: July 2, 2019
    Assignee: Apple Inc.
    Inventor: Romeo I. Mercado
  • Patent number: 10274700
    Abstract: An optical imaging lens assembly that may have six lens components. The optical imaging lens assembly may provide a 74 degree field of view. The first and fourth lens components may have positive refractive power. The second, third, and sixth lens components may have negative refractive power. The first lens component may have convex object-side and image-side refractive surfaces. The second and fifth lens components may have convex object-side and concave image-side refractive surfaces. The fourth lens component may have concave object-side and convex image-side refractive surfaces. The sixth lens component may have concave object-side and image-side refractive surfaces. The refracting surfaces may be aspheric. The optical imaging lens assembly may have a total track length of less than 6 millimeters and be part of a digital camera integrated into a portable wireless communications device.
    Type: Grant
    Filed: November 12, 2015
    Date of Patent: April 30, 2019
    Assignee: Apple Inc.
    Inventor: Romeo I. Mercado
  • Patent number: 9874721
    Abstract: An optical imaging lens assembly that may have six lens components. The first, third, fourth, and fifth lens components may have positive refractive power. The second and sixth lens components may have negative refractive power. The lens assembly may satisfy the relation |f/f5|+|f/f6|<1.4, wherein f is a focal length of the optical imaging lens assembly, f5 is a focal length of the fifth lens component, f6 is a focal length of the sixth lens component. The lens assembly may also satisfy the further relation 0.8<|f/f5|+|f/f6|. The first lens component may include a wafer lens having a lens element molded on one or both surfaces of a planar substrate or two wafer lenses having a lens element molded on one surface of each of two planar substrates. The wafer lens may include an electrically controlled electrochromic surface having variable light transmittance.
    Type: Grant
    Filed: August 19, 2015
    Date of Patent: January 23, 2018
    Assignee: APPLE INC.
    Inventor: Romeo I. Mercado
  • Patent number: 9817213
    Abstract: An optical imaging lens assembly that may have five lens components. The first, third, and fourth lens components may have positive refractive power. The second and fifth lens components may have negative refractive power. The third lens component may have convex object-side and convex image-side refractive surfaces. The fourth lens component may have convex object-side and concave image-side refractive surfaces. The first lens component may include a wafer lens having a lens element molded on one or both surfaces of a planar substrate or two wafer lenses having a lens element molded on one surface of each of two planar substrates. The wafer lens may include an electrically controlled electrochromic surface having variable light transmittance in response to an applied electrical voltage. The refracting surfaces may be aspheric.
    Type: Grant
    Filed: August 19, 2015
    Date of Patent: November 14, 2017
    Assignee: APPLE INC.
    Inventor: Romeo I. Mercado
  • Patent number: 9557627
    Abstract: A folded lens system may include multiple lenses with refractive power and a light path folding element. Light entering the camera through lens(es) on a first optical path or axis is refracted to the folding element, which changes direction of the light onto a second optical path or axis with lens(es) that refract the light to form an image plane at a photosensor. At least one of the object side and image side surfaces of at least one of the lens elements may be aspheric. Total track length (TTL) of the lens system may be 16.0 mm or less. The lens system may be configured so that the telephoto ration |TTL/f| is greater than 1.0. Materials, radii of curvature, shapes, sizes, spacing, and aspheric coefficients of the optical elements may be selected to achieve quality optical performance and high image resolution in a small form factor camera.
    Type: Grant
    Filed: May 30, 2014
    Date of Patent: January 31, 2017
    Assignee: Apple Inc.
    Inventor: Romeo I. Mercado
  • Publication number: 20160341934
    Abstract: An optical imaging lens assembly that may have six lens components. The optical imaging lens assembly may provide a 74 degree field of view. The first and fourth lens components may have positive refractive power. The second, third, and sixth lens components may have negative refractive power. The first lens component may have convex object-side and image-side refractive surfaces. The second and fifth lens components may have convex object-side and concave image-side refractive surfaces. The fourth lens component may have concave object-side and convex image-side refractive surfaces. The sixth lens component may have concave object-side and image-side refractive surfaces. The refracting surfaces may be aspheric. The optical imaging lens assembly may have a total track length of less than 6 millimeters and be part of a digital camera integrated into a portable wireless communications device.
    Type: Application
    Filed: November 12, 2015
    Publication date: November 24, 2016
    Inventor: Romeo I. Mercado
  • Publication number: 20160313537
    Abstract: An optical imaging lens assembly that may have five lens components. The first, third, and fourth lens components may have positive refractive power. The second and fifth lens components may have negative refractive power. The third lens component may have convex object-side and convex image-side refractive surfaces. The fourth lens component may have convex object-side and concave image-side refractive surfaces. The first lens component may include a wafer lens having a lens element molded on one or both surfaces of a planar substrate or two wafer lenses having a lens element molded on one surface of each of two planar substrates. The wafer lens may include an electrically controlled electrochromic surface having variable light transmittance in response to an applied electrical voltage. The refracting surfaces may be aspheric.
    Type: Application
    Filed: August 19, 2015
    Publication date: October 27, 2016
    Inventor: Romeo I. Mercado
  • Publication number: 20160231540
    Abstract: A folded telephoto lens system may include multiple lenses with refractive power and a light path folding element. Light entering the camera through lens(es) on a first path is refracted to the folding element, which changes direction of the light on to a second path with lens(es) that refract the light to form an image plane at a photosensor. At least one of the object side and image side surfaces of at least one of the lens elements may be aspheric. Total track length (TTL) of the lens system may be 14.0 mm or less. The lens system may be configured so that the telephoto ration (TTL/f) is less than or equal to 1.0. Materials, radii of curvature, shapes, sizes, spacing, and aspheric coefficients of the optical elements may be selected to achieve quality optical performance and high image resolution in a small form factor camera.
    Type: Application
    Filed: April 15, 2016
    Publication date: August 11, 2016
    Applicant: Apple Inc.
    Inventor: Romeo I. Mercado
  • Publication number: 20160231533
    Abstract: An optical imaging lens assembly that may have six lens components. The first, third, fourth, and fifth lens components may have positive refractive power. The second and sixth lens components may have negative refractive power. The lens assembly may satisfy the relation |f/f5|+|f/f6|<1.4, wherein f is a focal length of the optical imaging lens assembly, f5 is a focal length of the fifth lens component, f6 is a focal length of the sixth lens component. The lens assembly may also satisfy the further relation 0.8<|f/f5|+|f/f6|. The first lens component may include a wafer lens having a lens element molded on one or both surfaces of a planar substrate or two wafer lenses having a lens element molded on one surface of each of two planar substrates. The wafer lens may include an electrically controlled electrochromic surface having variable light transmittance.
    Type: Application
    Filed: August 19, 2015
    Publication date: August 11, 2016
    Inventor: Romeo I. Mercado
  • Patent number: 9316810
    Abstract: A folded telephoto lens system may include multiple lenses with refractive power and a light path folding element. Light entering the camera through lens(es) on a first path is refracted to the folding element, which changes direction of the light on to a second path with lens(es) that refract the light to form an image plane at a photosensor. At least one of the object side and image side surfaces of at least one of the lens elements may be aspheric. Total track length (TTL) of the lens system may be 14.0 mm or less. The lens system may be configured so that the telephoto ration (TTL/f) is less than or equal to 1.0. Materials, radii of curvature, shapes, sizes, spacing, and aspheric coefficients of the optical elements may be selected to achieve quality optical performance and high image resolution in a small form factor camera.
    Type: Grant
    Filed: May 30, 2014
    Date of Patent: April 19, 2016
    Assignee: Apple Inc.
    Inventor: Romeo I. Mercado
  • Publication number: 20160085059
    Abstract: A compact telephoto lens system that may be used in a small form factor cameras. The lens system may include five lens elements with refractive power. Alternatively, the lens system may include four lens elements with refractive power. At least one of the object side and image side surfaces of at least one of the lens elements is aspheric. Total track length (TTL) of the lens system may be 6.0 mm or less. Focal length f of the lens system may be at or about 7.0 mm (for example, within a range of 6.5-7.5 mm). Lens elements are selected and configured so that the telephoto ratio (TTL/f) satisfies the relation 0.74<TTL/f<1.0. Materials, radii of curvature, shapes, sizes, spacing, and aspheric coefficients of the lens elements may be selected to achieve quality optical performance and high image resolution in a small form factor telephoto camera.
    Type: Application
    Filed: December 7, 2015
    Publication date: March 24, 2016
    Applicant: Apple Inc.
    Inventor: Romeo I. Mercado
  • Patent number: 9223118
    Abstract: A compact telephoto lens system that may be used in a small form factor cameras. The lens system may include five lens elements with refractive power. Alternatively, the lens system may include four lens elements with refractive power. At least one of the object side and image side surfaces of at least one of the lens elements is aspheric. Total track length (TTL) of the lens system may be 6.0 mm or less. Focal length f of the lens system may be at or about 7.0 mm (for example, within a range of 6.5-7.5 mm). Lens elements are selected and configured so that the telephoto ratio (TTL/f) satisfies the relation 0.74<TTL/f<1.0. Materials, radii of curvature, shapes, sizes, spacing, and aspheric coefficients of the lens elements may be selected to achieve quality optical performance and high image resolution in a small form factor telephoto camera.
    Type: Grant
    Filed: October 31, 2013
    Date of Patent: December 29, 2015
    Assignee: Apple Inc.
    Inventor: Romeo I. Mercado
  • Publication number: 20150253543
    Abstract: A folded telephoto lens system may include multiple lenses with refractive power and a light path folding element. Light entering the camera through lens(es) on a first path is refracted to the folding element, which changes direction of the light on to a second path with lens(es) that refract the light to form an image plane at a photosensor. At least one of the object side and image side surfaces of at least one of the lens elements may be aspheric. Total track length (TTL) of the lens system may be 14.0 mm or less. The lens system may be configured so that the telephoto ration (TTL/f) is less than or equal to 1.0. Materials, radii of curvature, shapes, sizes, spacing, and aspheric coefficients of the optical elements may be selected to achieve quality optical performance and high image resolution in a small form factor camera.
    Type: Application
    Filed: May 30, 2014
    Publication date: September 10, 2015
    Applicant: APPLE INC.
    Inventor: Romeo I. Mercado
  • Publication number: 20150253647
    Abstract: A folded lens system may include multiple lenses with refractive power and a light path folding element. Light entering the camera through lens(es) on a first optical path or axis is refracted to the folding element, which changes direction of the light onto a second optical path or axis with lens(es) that refract the light to form an image plane at a photosensor. At least one of the object side and image side surfaces of at least one of the lens elements may be aspheric. Total track length (TTL) of the lens system may be 16.0 mm or less. The lens system may be configured so that the telephoto ration |TTL/f| is greater than 1.0. Materials, radii of curvature, shapes, sizes, spacing, and aspheric coefficients of the optical elements may be selected to achieve quality optical performance and high image resolution in a small form factor camera.
    Type: Application
    Filed: May 30, 2014
    Publication date: September 10, 2015
    Applicant: Apple Inc.
    Inventor: Romeo I. Mercado
  • Publication number: 20150116569
    Abstract: A compact telephoto lens system that may be used in a small form factor cameras. The lens system may include five lens elements with refractive power. Alternatively, the lens system may include four lens elements with refractive power. At least one of the object side and image side surfaces of at least one of the lens elements is aspheric. Total track length (TTL) of the lens system may be 6.0 mm or less. Focal length f of the lens system may be at or about 7.0 mm (for example, within a range of 6.5-7.5 mm). Lens elements are selected and configured so that the telephoto ratio (TTL/f) satisfies the relation 0.74<TTL/f<1.0. Materials, radii of curvature, shapes, sizes, spacing, and aspheric coefficients of the lens elements may be selected to achieve quality optical performance and high image resolution in a small form factor telephoto camera.
    Type: Application
    Filed: October 31, 2013
    Publication date: April 30, 2015
    Applicant: Apple Inc.
    Inventor: Romeo I. Mercado
  • Patent number: 8659823
    Abstract: Ring-field, catoptric and catadioptric, unit-magnification, projection optical systems having non-concentric optical surfaces are disclosed. Each system has a system axis with object and image planes on opposite sides of the system axis. The non-concentric surfaces allow for working distances of the object and image planes in excess of 100 millimeters to be achieved, with a ring-field width sufficient to allow a rectangular object-field having a long dimension in excess of 100 mm to be projected.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: February 25, 2014
    Assignee: Coherent, Inc.
    Inventor: Romeo I. Mercado