Patents by Inventor Ronald Gagnon

Ronald Gagnon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240078422
    Abstract: An optoelectronic computing system includes a first semiconductor die having a photonic integrated circuit (PIC) and a second semiconductor die having an electronic integrated circuit (EIC). The PIC includes optical waveguides, in which input values are encoded on respective optical signals carried by the optical waveguides. The PIC includes an optical copying distribution network having optical splitters. The PIC includes an array of optoelectronic circuitry sections, each receiving an optical wave from one of the output ports of the optical copying distribution network, and each optoelectronic circuitry section includes: at least one photodetector detecting at least one optical wave from the optoelectronic operation. The EIC includes electrical input ports receiving respective electrical values.
    Type: Application
    Filed: June 29, 2023
    Publication date: March 7, 2024
    Inventors: Huaiyu Meng, Yichen Shen, Yelong Xu, Gilbert Hendry, Longwu Ou, Jingdong Deng, Ronald Gagnon, Cheng-Kuan Lu, Maurice Steinman, Mike Evans, Jianhua Wu
  • Patent number: 11907832
    Abstract: A method includes: providing input information in an electronic format; converting the electronic input information into an optical input vector; optically transforming the optical input vector into an optical output vector based on an optical matrix multiplication; converting the optical output vector into an electronic format; and electronically applying a non-linear transformation to the electronically converted optical output vector to provide output information in an electronic format. For example, a set of input values are encoded on respective optical signals. For each of at least two subsets of optical signals, a copying module splits the subset into multiple copies of the optical signals. For each copy of a first subset of optical signals, a corresponding multiplication module multiplies the optical signals of the first subset by matrix element values using optical amplitude modulation. A summation module produces an electrical signal representing a sum of the results of the multiplication modules.
    Type: Grant
    Filed: April 20, 2020
    Date of Patent: February 20, 2024
    Assignee: Lightelligence PTE. Ltd.
    Inventors: Yichen Shen, Huaiyu Meng, Li Jing, Rumen Dangovski, Peng Xie, Matthew Khoury, Cheng-Kuan Lu, Ronald Gagnon, Maurice Steinman, Jianhua Wu, Arash Hosseinzadeh
  • Patent number: 11853871
    Abstract: A system includes a first unit configured to generate a plurality of modulator control signals, and a processor unit. The processor unit includes: a light source or port configured to provide a plurality of light outputs, and a first set of optical modulators coupled to the light source or port and the first unit. The optical modulators in the first set are configured to generate an optical input vector by modulating the plurality of light outputs provided by the light source or port based on digital input values corresponding to a first set of modulator control signals in the plurality of modulator control signals, the optical input vector comprising a plurality of optical signals. The processor unit also includes a matrix multiplication unit that includes a second set of optical modulators.
    Type: Grant
    Filed: November 3, 2022
    Date of Patent: December 26, 2023
    Assignee: Lightelligence PTE. Ltd.
    Inventors: Huaiyu Meng, Yichen Shen, Arash Hosseinzadeh, Yelong Xu, Yanfei Bai, Ronald Gagnon, Cheng-Kuan Lu, Jonathan Terry, Jingdong Deng, Maurice Steinman
  • Patent number: 11800299
    Abstract: A MEMS transducer system has a transducer configured to convert a received signal into an output signal for forwarding by a transducer output port, and an integrated circuit having an IC input in communication with the transducer output port. The IC input is configured to receive an IC input signal produced as a function of the output signal. The system also has a dividing element coupled between the IC input and the transducer output port. The dividing element is configured to selectively attenuate one or more signals into the IC input to at least in part produce the IC input signal. Other implementations may couple a feedback loop to the ground of the transducer (similar to bootstrapping), or pick off voltages at specific portions of the transducer.
    Type: Grant
    Filed: May 18, 2022
    Date of Patent: October 24, 2023
    Assignee: QUALCOMM Technologies, Inc.
    Inventors: Robert Littrell, Ronald Gagnon
  • Patent number: 11783172
    Abstract: Systems and methods that include: providing input information in an electronic format; converting at least a part of the electronic input information into an optical input vector; optically transforming the optical input vector into an optical output vector based on an optical matrix multiplication; converting the optical output vector into an electronic format; and electronically applying a non-linear transformation to the electronically converted optical output vector to provide output information in an electronic format. In some examples, a set of multiple input values are encoded on respective optical signals carried by optical waveguides. For each of at least two subsets of one or more optical signals, a corresponding set of one or more copying modules splits the subset of one or more optical signals into two or more copies of the optical signals.
    Type: Grant
    Filed: April 20, 2020
    Date of Patent: October 10, 2023
    Assignee: Lightelligence PTE. Ltd.
    Inventors: Yichen Shen, Huaiyu Meng, Li Jing, Rumen Dangovski, Peng Xie, Matthew Khoury, Cheng-Kuan Lu, Ronald Gagnon, Maurice Steinman, Jianhua Wu, Arash Hosseinzadeh
  • Publication number: 20230308808
    Abstract: A device comprising: a sensor; and a first circuit configured to detect when an input stimulus to the sensor satisfies one or more detection criteria, and further configured to produce a signal upon detection that causes adjustment of performance of the device; and a second circuit for processing input following detection, wherein the second circuit is configured to increase its power level following detection, relative to a power level of the second circuit prior to detection.
    Type: Application
    Filed: March 27, 2023
    Publication date: September 28, 2023
    Inventors: Robert John LITTRELL, Ronald GAGNON, Karl GROSH
  • Patent number: 11734555
    Abstract: Systems and methods that include: providing input information in an electronic format; converting at least a part of the electronic input information into an optical input vector; optically transforming the optical input vector into an optical output vector based on an optical matrix multiplication; converting the optical output vector into an electronic format; and electronically applying a non-linear transformation to the electronically converted optical output vector to provide output information in an electronic format. In some examples, a set of multiple input values are encoded on respective optical signals carried by optical waveguides. For each of at least two subsets of one or more optical signals, a corresponding set of one or more copying modules splits the subset of one or more optical signals into two or more copies of the optical signals.
    Type: Grant
    Filed: June 4, 2019
    Date of Patent: August 22, 2023
    Assignee: Lightelligence PTE. Ltd.
    Inventors: Yichen Shen, Huaiyu Meng, Li Jing, Rumen Dangovski, Peng Xie, Matthew Khoury, Cheng-Kuan Lu, Ronald Gagnon, Maurice Steinman, Jianhua Wu, Arash Hosseinzadeh
  • Patent number: 11734556
    Abstract: An optoelectronic computing system includes a first semiconductor die having a photonic integrated circuit (PIC) and a second semiconductor die having an electronic integrated circuit (EIC). The PIC includes optical waveguides, in which input values are encoded on respective optical signals carried by the optical waveguides. The PIC includes an optical copying distribution network having optical splitters. The PIC includes an array of optoelectronic circuitry sections, each receiving an optical wave from one of the output ports of the optical copying distribution network, and each optoelectronic circuitry section includes: at least one photodetector detecting at least one optical wave from the optoelectronic operation. The EIC includes electrical input ports receiving respective electrical values.
    Type: Grant
    Filed: March 17, 2021
    Date of Patent: August 22, 2023
    Assignee: Lightelligence PTE. Ltd.
    Inventors: Huaiyu Meng, Yichen Shen, Yelong Xu, Gilbert Hendry, Longwu Ou, Jingdong Deng, Ronald Gagnon, Cheng-Kuan Lu, Maurice Steinman, Mike Evans, Jianhua Wu
  • Patent number: 11687767
    Abstract: Systems and methods that include: providing input information in an electronic format; converting at least a part of the electronic input information into an optical input vector; optically transforming the optical input vector into an optical output vector based on an optical matrix multiplication; converting the optical output vector into an electronic format; and electronically applying a non-linear transformation to the electronically converted optical output vector to provide output information in an electronic format. In some examples, a set of multiple input values are encoded on respective optical signals carried by optical waveguides. For each of at least two subsets of one or more optical signals, a corresponding set of one or more copying modules splits the subset of one or more optical signals into two or more copies of the optical signals.
    Type: Grant
    Filed: March 18, 2022
    Date of Patent: June 27, 2023
    Assignee: Lightelligence PTE. Ltd.
    Inventors: Yichen Shen, Li Jing, Rumen Dangovski, Peng Xie, Huaiyu Meng, Matthew Khoury, Cheng-Kuan Lu, Ronald Gagnon, Maurice Steinman, Jianhua Wu, Arash Hosseinzadeh
  • Patent number: 11617041
    Abstract: A device comprising: a sensor; and a first circuit configured to detect when an input stimulus to the sensor satisfies one or more detection criteria, and further configured to produce a signal upon detection that causes adjustment of performance of the device; and a second circuit for processing input following detection, wherein the second circuit is configured to increase its power level following detection, relative to a power level of the second circuit prior to detection.
    Type: Grant
    Filed: May 13, 2020
    Date of Patent: March 28, 2023
    Assignee: QUALCOMM Incorporated
    Inventors: Robert J. Littrell, Ronald Gagnon, Karl Grosh
  • Publication number: 20230057523
    Abstract: A system includes a first unit configured to generate a plurality of modulator control signals, and a processor unit. The processor unit includes: a light source or port configured to provide a plurality of light outputs, and a first set of optical modulators coupled to the light source or port and the first unit. The optical modulators in the first set are configured to generate an optical input vector by modulating the plurality of light outputs provided by the light source or port based on digital input values corresponding to a first set of modulator control signals in the plurality of modulator control signals, the optical input vector comprising a plurality of optical signals. The processor unit also includes a matrix multiplication unit that includes a second set of optical modulators.
    Type: Application
    Filed: November 3, 2022
    Publication date: February 23, 2023
    Inventors: Arash Hosseinzadeh, Yelong Xu, Yanfei Bai, Huaiyu Meng, Ronald Gagnon, Cheng-Kuan Lu, Jonathan Terry, Jingdong Deng, Maurice Steinman, Yichen Shen
  • Publication number: 20230008989
    Abstract: Embodiments of the present invention provide an optical structure, an optical coupling method, and a photonic integrated circuit chip. The optical structure includes: two optical coupling structures with different structures, that is, a first optical coupling structure and a second optical coupling structure. The first optical coupling structure includes a first optical transmission structure, and a first coupling port and a second coupling port both connected to the first optical transmission structure. The second optical coupling structure includes a second optical transmission structure, and a third coupling port and a photoelectric conversion structure both connected to the second optical transmission structure. When optical signals are provided in different methods or optical coupling is performed in different scenarios, optical signal coupling can be realized by using optical coupling structures of different structures in the abovementioned optical structure.
    Type: Application
    Filed: July 8, 2022
    Publication date: January 12, 2023
    Applicant: Nanjing Guangzhiyuan Technology Co., Ltd.
    Inventors: Zhan SU, Junjie CHEN, Jianhua WU, Yunpeng ZHU, Hui CHEN, Zhiquan XUE, Ronald GAGNON, Huaiyu MENG, Yichen SHEN
  • Patent number: 11507818
    Abstract: A system includes a first unit configured to generate a plurality of modulator control signals, and a processor unit. The processor unit includes: a light source or port configured to provide a plurality of light outputs, and a first set of optical modulators coupled to the light source or port and the first unit. The optical modulators in the first set are configured to generate an optical input vector by modulating the plurality of light outputs provided by the light source or port based on digital input values corresponding to a first set of modulator control signals in the plurality of modulator control signals, the optical input vector comprising a plurality of optical signals. The processor unit also includes a matrix multiplication unit that includes a second set of optical modulators.
    Type: Grant
    Filed: December 4, 2019
    Date of Patent: November 22, 2022
    Assignee: LIGHTELLIGENCE PTE. LTD.
    Inventors: Arash Hosseinzadeh, Yelong Xu, Yanfei Bai, Huaiyu Meng, Ronald Gagnon, Cheng-Kuan Lu, Jonathan Terry, Jingdong Deng, Maurice Steinman, Yichen Shen
  • Publication number: 20220279286
    Abstract: A MEMS transducer system has a transducer configured to convert a received signal into an output signal for forwarding by a transducer output port, and an integrated circuit having an IC input in communication with the transducer output port. The IC input is configured to receive an IC input signal produced as a function of the output signal. The system also has a dividing element coupled between the IC input and the transducer output port. The dividing element is configured to selectively attenuate one or more signals into the IC input to at least in part produce the IC input signal. Other implementations may couple a feedback loop to the ground of the transducer (similar to bootstrapping), or pick off voltages at specific portions of the transducer.
    Type: Application
    Filed: May 18, 2022
    Publication date: September 1, 2022
    Inventors: Robert Littrell, Ronald Gagnon
  • Publication number: 20220215257
    Abstract: Systems and methods that include: providing input information in an electronic format; converting at least a part of the electronic input information into an optical input vector; optically transforming the optical input vector into an optical output vector based on an optical matrix multiplication; converting the optical output vector into an electronic format; and electronically applying a non-linear transformation to the electronically converted optical output vector to provide output information in an electronic format. In some examples, a set of multiple input values are encoded on respective optical signals carried by optical waveguides. For each of at least two subsets of one or more optical signals, a corresponding set of one or more copying modules splits the subset of one or more optical signals into two or more copies of the optical signals.
    Type: Application
    Filed: March 18, 2022
    Publication date: July 7, 2022
    Inventors: Yichen Shen, Li Jing, Rumen Dangovski, Peng Xie, Huaiyu Meng, Matthew Khoury, Cheng-Kuan Lu, Ronald Gagnon, Maurice Steinman, Jianhua Wu, Arash Hosseinzadeh
  • Patent number: 11363387
    Abstract: A MEMS transducer system has a transducer configured to convert a received signal into an output signal for forwarding by a transducer output port, and an integrated circuit having an IC input in communication with the transducer output port. The IC input is configured to receive an IC input signal produced as a function of the output signal. The system also has a dividing element coupled between the IC input and the transducer output port. The dividing element is configured to selectively attenuate one or more signals into the IC input to at least in part produce the IC input signal. Other implementations may couple a feedback loop to the ground of the transducer (similar to bootstrapping), or pick off voltages at specific portions of the transducer.
    Type: Grant
    Filed: February 3, 2021
    Date of Patent: June 14, 2022
    Assignee: Vesper Technologies, Inc.
    Inventors: Robert Littrell, Ronald Gagnon
  • Patent number: 11281972
    Abstract: Systems and methods that include: providing input information in an electronic format; converting at least a part of the electronic input information into an optical input vector; optically transforming the optical input vector into an optical output vector based on an optical matrix multiplication; converting the optical output vector into an electronic format; and electronically applying a non-linear transformation to the electronically converted optical output vector to provide output information in an electronic format. In some examples, a set of multiple input values are encoded on respective optical signals carried by optical waveguides. For each of at least two subsets of one or more optical signals, a corresponding set of one or more copying modules splits the subset of one or more optical signals into two or more copies of the optical signals.
    Type: Grant
    Filed: April 20, 2020
    Date of Patent: March 22, 2022
    Assignee: Lightelligence PTE. Ltd.
    Inventors: Yichen Shen, Li Jing, Rumen Dangovski, Peng Xie, Huaiyu Meng, Matthew Khoury, Cheng-Kuan Lu, Ronald Gagnon, Maurice Steinman, Jianhua Wu, Arash Hosseinzadeh
  • Patent number: 11228843
    Abstract: A device includes: a piezoelectric transducer; a field effect transistor (FET) configured to provide a sub-threshold conduction path for leakage current across the piezoelectric transducer; wherein the FET comprises a gate; wherein each of a width and a length of the gate has a size in accordance with the sub-threshold conduction path being configured to substantially maintain an input voltage to the piezoelectric transducer across a path of the leakage current of the piezoelectric transducer.
    Type: Grant
    Filed: October 6, 2017
    Date of Patent: January 18, 2022
    Assignee: Vesper Technologies Inc.
    Inventors: Ronald Gagnon, Chen-Wei Huang
  • Publication number: 20210306759
    Abstract: A device includes: a piezoelectric transducer; a field effect transistor (FET) configured to provide a sub-threshold conduction path for leakage current across the piezoelectric transducer; wherein the FET comprises a gate; wherein each of a width and a length of the gate has a size in accordance with the sub-threshold conduction path being configured to substantially maintain an input voltage to the piezoelectric transducer across a path of the leakage current of the piezoelectric transducer.
    Type: Application
    Filed: October 6, 2017
    Publication date: September 30, 2021
    Inventors: Ronald Gagnon, Chen-Wei Huang
  • Patent number: 11099078
    Abstract: An acoustic sensor has a MEMS die with MEMS structure. Among other things, the MEMS structure includes a diaphragm configured to mechanically respond to incident acoustic signals, and a temperature sensor member configured to detect temperature.
    Type: Grant
    Filed: August 23, 2018
    Date of Patent: August 24, 2021
    Assignee: Vesper Technologies, Inc.
    Inventors: Robert Littrell, Yu Hui, Craig Core, Ronald Gagnon