Patents by Inventor Rongsheng Miao

Rongsheng Miao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11754788
    Abstract: A multi-channel mode converter includes a lens array having a first lens and a second lens, a glass block coupled to the lens array, and a fiber assembly unit (FAU) array coupled to the glass block, the FAU array including a first fiber corresponding to the first lens, and a second fiber corresponding to the second lens. The FAU array provides for a corresponding number of fibers and lenses such that a specific single fiber corresponds to a specific single lens, there being a 1:1 relationship between fibers and lenses. A mode converter system comprises: a lens array comprising: a first silicon lens configured to convert a first mode between a first waveguide and a first fiber, and a second silicon lens configured to convert a second mode between a second waveguide and a second fiber, and a glass block coupled to the lens array and configured to provide an optical path for a first light beam corresponding to the first silicon lens and a second light beam corresponding to the second silicon lens.
    Type: Grant
    Filed: February 24, 2021
    Date of Patent: September 12, 2023
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Rongsheng Miao, Xueyan Zheng, Xiao Andy Shen, Yu Sheng Bai
  • Publication number: 20210181423
    Abstract: A multi-channel mode converter includes a lens array having a first lens and a second lens, a glass block coupled to the lens array, and a fiber assembly unit (FAU) array coupled to the glass block, the FAU array including a first fiber corresponding to the first lens, and a second fiber corresponding to the second lens. The FAU array provides for a corresponding number of fibers and lenses such that a specific single fiber corresponds to a specific single lens, there being a 1:1 relationship between fibers and lenses. A mode converter system comprises: a lens array comprising: a first silicon lens configured to convert a first mode between a first waveguide and a first fiber, and a second silicon lens configured to convert a second mode between a second waveguide and a second fiber, and a glass block coupled to the lens array and configured to provide an optical path for a first light beam corresponding to the first silicon lens and a second light beam corresponding to the second silicon lens.
    Type: Application
    Filed: February 24, 2021
    Publication date: June 17, 2021
    Inventors: Rongsheng Miao, Xueyan Zheng, Xiao Andy Shen, Yu Sheng Bai
  • Patent number: 10641966
    Abstract: A free space coupling system comprising a waveguide horizontally positioned on an integrated circuit, and a silicon housing coupled to the waveguide, wherein the silicon housing comprises a reflective surface, a first port, wherein the first port is configured to receive light from an optic source positioned substantially parallel to the waveguide at a coupling point, and a second port, wherein the second port is oriented at about ninety degrees with respect to the first port, and wherein the second port is aligned with a grating port on the waveguide.
    Type: Grant
    Filed: March 20, 2017
    Date of Patent: May 5, 2020
    Assignee: Futurewei Technologies, Inc.
    Inventors: Rongsheng Miao, Zongrong Liu, Qianfan Xu, Xiao Shen
  • Patent number: 10539744
    Abstract: A gapless optical mode converter comprising a fiber holder configured to receive and hold an optical transmission line, a first glass block coupled via an optical adhesive at a first side to the fiber holder, a lens coupled via the optical adhesive at a first side to a second side of the first glass block, and a holder configured to hold the fiber holder, the first glass block, and the lens.
    Type: Grant
    Filed: January 11, 2017
    Date of Patent: January 21, 2020
    Assignee: Futurewei Technologies, Inc.
    Inventors: Rongsheng Miao, Zongrong Liu, Xueyan Zheng, Xiao Shen
  • Patent number: 10151865
    Abstract: Approaches to Compact External Grating PBS/PBC Coupling are described according to embodiments of the present invention. In one embodiment, a YVO4 crystal is used to split a beam or combine multiple beams into a single beam. A lens is used to convert a mode of the light to match a mode of a grating port. A glass wedge is designed to bend the light from horizontal to a nearly vertical orientation to match an exit angle of a grating port. When a source or a receiver utilizes an optical fiber, a fiber holder may be used to bond the fiber to the source or receiver. The PBS/PBC described has much less insertion loss compared to existing 2D grating coupler techniques, and has a wider spectral bandwidth due to flexibility in mode matching compared to existing 2D grating couplers.
    Type: Grant
    Filed: January 7, 2015
    Date of Patent: December 11, 2018
    Assignee: FutureWei Technologies, Inc.
    Inventors: Rongsheng Miao, Yusheng Bai
  • Patent number: 9974163
    Abstract: A method comprising coupling a circuit to an opto-electronic package via an anisotropic conductive film (ACF), wherein the opto-electronic package is configured to communicate electrical signals via the coupling at a maximum frequency of about 10 gigahertz (GHz) to about 40 GHz. An apparatus comprising, an opto-electronic package comprising a plurality of first electrodes, and a circuit comprising a plurality of second electrodes, wherein at least one of the first electrodes is coupled to at least one of the second electrodes via an ACF, and wherein the opto-electronic package is configured to communicate electrical signals via the coupling at a maximum frequency of about 10 GHz to about 40 GHz.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: May 15, 2018
    Assignee: FUTUREWEI TECHNOLOGIES, INC.
    Inventors: Morgan Chen, Rongsheng Miao, Xueyan Zheng, Bo Li, Xiao Shen, Yu Sheng Bai
  • Patent number: 9939593
    Abstract: A photonic device comprising a base plate, a photonic laser coupled to the base plate, wherein the photonic laser is configured to generate a light, a lens coupled to the base plate, wherein the lens is configured to receive the light from the photonic laser, form a focused light, and pass the focused light to a reflector, and the reflector incorporated with the base plate such that the lens is positioned between the photonic laser and the reflector, wherein the reflector is configured to receive the focused light, and wherein the reflector is configured to steer a first portion of the focused light through the base plate using total internal reflection.
    Type: Grant
    Filed: November 11, 2015
    Date of Patent: April 10, 2018
    Assignee: Futurewei Technologies, Inc.
    Inventors: Rongsheng Miao, Yu Sheng Bai
  • Patent number: 9933570
    Abstract: A method for fabricating a photonic integrated circuit (PIC) comprises providing a wafer comprising an insulator layer positioned between a top semiconductor layer and a base semiconductor layer, patterning the top semiconductor layer to simultaneously define a waveguide and a first etch mask window for forming a fiber-guiding v-groove that substantially aligns to an axis of optical signal propagation of the waveguide, removing a first portion of the top semiconductor layer to form the waveguide according to the patterning, removing a second portion of the top semiconductor layer to form the first etch mask window according to the patterning, and forming the fiber-guiding v-groove according to the first etch mask window.
    Type: Grant
    Filed: March 1, 2016
    Date of Patent: April 3, 2018
    Assignee: Futurewei Technologies, Inc.
    Inventors: Zongrong Liu, Qianfan Xu, Rongsheng Miao, Hongmin Chen, Xiao Shen, Yu Sheng Bai
  • Patent number: 9874699
    Abstract: An apparatus comprises a transistor outline (TO) package comprising a TO can holder; and a TO can at least partially embedded within the TO can holder; and a mode converter coupled to the TO package. A system comprises a mode converter comprising a lens configured to convert a mode of a light from a first mode size to a second mode size, wherein the first mode size is smaller than the second mode size; a silicon photonic chip comprising a waveguide configured to communicate the light; a fiber configured to couple to the lens and the waveguide; and a substrate configured to provide a support for the silicon photonic chip.
    Type: Grant
    Filed: March 2, 2016
    Date of Patent: January 23, 2018
    Assignee: Futurewei Technologies, Inc.
    Inventors: Rongsheng Miao, Yu Sheng Bai
  • Publication number: 20180017735
    Abstract: Multiplexer and demultiplexer apparatuses are disclosed herein. In various embodiments, a demultiplexer apparatus comprises a receptacle having a collimate lens and configured to receive an inlet light, a substrate, a reflector mounted to the substrate and configured to reflect the inlet light. The reflector is either fixed or adjustable during assembly. The demultiplexer apparatus also includes a demultiplexer block coupled to the substrate and configured to receive the inlet light from the reflector and separate the inlet light into multiple wavelengths, a folding prism coupled to the substrate that receives and refracts the multiple wavelengths through the substrate, and a focal lens array coupled to the substrate to receive the focus of the multiple wavelengths.
    Type: Application
    Filed: May 18, 2017
    Publication date: January 18, 2018
    Inventors: Rongsheng Miao, Yu Sheng Bai
  • Publication number: 20170254954
    Abstract: A method for fabricating a photonic integrated circuit (PIC) comprises providing a wafer comprising an insulator layer positioned between a top semiconductor layer and a base semiconductor layer, patterning the top semiconductor layer to simultaneously define a waveguide and a first etch mask window for forming a fiber-guiding v-groove that substantially aligns to an axis of optical signal propagation of the waveguide, removing a first portion of the top semiconductor layer to form the waveguide according to the patterning, removing a second portion of the top semiconductor layer to form the first etch mask window according to the patterning, and forming the fiber-guiding v-groove according to the first etch mask window.
    Type: Application
    Filed: March 1, 2016
    Publication date: September 7, 2017
    Inventors: Zongrong Liu, Qianfan Xu, Rongsheng Miao, Hongmin Chen, Xiao Shen, Yu Sheng Bai
  • Publication number: 20170254959
    Abstract: An apparatus comprises a transistor outline (TO) package comprising a TO can holder; and a TO can at least partially embedded within the TO can holder; and a mode converter coupled to the TO package. A system comprises a mode converter comprising a lens configured to convert a mode of a light from a first mode size to a second mode size, wherein the first mode size is smaller than the second mode size; a silicon photonic chip comprising a waveguide configured to communicate the light; a fiber configured to couple to the lens and the waveguide; and a substrate configured to provide a support for the silicon photonic chip.
    Type: Application
    Filed: March 2, 2016
    Publication date: September 7, 2017
    Inventors: Rongsheng Miao, Yu Sheng Bai
  • Publication number: 20170205582
    Abstract: A gapless optical mode converter comprising a fiber holder configured to receive and hold an optical transmission line, a first glass block coupled via an optical adhesive at a first side to the fiber holder, a lens coupled via the optical adhesive at a first side to a second side of the first glass block, and a holder configured to hold the fiber holder, the first glass block, and the lens.
    Type: Application
    Filed: January 11, 2017
    Publication date: July 20, 2017
    Inventors: Rongsheng Miao, Zongrong Liu, Xueyan Zheng, Xiao Shen
  • Publication number: 20170192175
    Abstract: A free space coupling system comprising a waveguide horizontally positioned on an integrated circuit, and a silicon housing coupled to the waveguide, wherein the silicon housing comprises a reflective surface, a first port, wherein the first port is configured to receive light from an optic source positioned substantially parallel to the waveguide at a coupling point, and a second port, wherein the second port is oriented at about ninety degrees with respect to the first port, and wherein the second port is aligned with a grating port on the waveguide.
    Type: Application
    Filed: March 20, 2017
    Publication date: July 6, 2017
    Inventors: Rongsheng Miao, Zongrong Liu, Qianfan Xu, Xiao Shen
  • Patent number: 9632281
    Abstract: A free space coupling system comprising a waveguide horizontally positioned on an integrated circuit, and a silicon housing coupled to the waveguide, wherein the silicon housing comprises a reflective surface, a first port, wherein the first port is configured to receive light from an optic source positioned substantially parallel to the waveguide at a coupling point, and a second port, wherein the second port is oriented at about ninety degrees with respect to the first port, and wherein the second port is aligned with a grating port on the waveguide.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: April 25, 2017
    Assignee: Futurewei Technologies, Inc.
    Inventors: Rongsheng Miao, Zongrong Liu, Qianfan Xu, Xiao Shen
  • Patent number: 9577408
    Abstract: A monolithically integrated thermal tunable laser comprising a layered substrate comprising an upper surface and a lower surface, and a thermal tuning assembly comprising a heating element positioned on the upper surface, a waveguide layer positioned between the upper surface and the lower surface, and a thermal insulation layer positioned between the waveguide layer and the lower surface, wherein the thermal insulation layer is at least partially etched out of an Indium Phosphide (InP) sacrificial layer, and wherein the thermal insulation layer is positioned between Indium Gallium Arsenide (InGaAs) etch stop layers.
    Type: Grant
    Filed: December 31, 2015
    Date of Patent: February 21, 2017
    Assignee: Futurewei Technologies, Inc.
    Inventors: Hongmin Chen, Xuejin Yan, Rongsheng Miao, Xiao Shen, Zongrong Liu
  • Patent number: 9372315
    Abstract: A BOSA package comprising only one cylindrical TO package comprising a ROSA and a TOSA, and an optical port in optical communication with the ROSA and the TOSA. Also disclosed is a TO package comprising a TOSA for transmitting a first optical signal, a ROSA for receiving a second optical signal, an optical communication window, and a TFF positioned such that the first optical signal transmitted from the TOSA is reflected by the TFF toward the optical communication window and the second optical signal received from the optical communication window passes through the TFF and to the ROSA.
    Type: Grant
    Filed: October 29, 2013
    Date of Patent: June 21, 2016
    Assignee: Futurewei Technologies, Inc.
    Inventors: Rongsheng Miao, Yu Sheng Bai
  • Publication number: 20160118772
    Abstract: A monolithically integrated thermal tunable laser comprising a layered substrate comprising an upper surface and a lower surface, and a thermal tuning assembly comprising a heating element positioned on the upper surface, a waveguide layer positioned between the upper surface and the lower surface, and a thermal insulation layer positioned between the waveguide layer and the lower surface, wherein the thermal insulation layer is at least partially etched out of an Indium Phosphide (InP) sacrificial layer, and wherein the thermal insulation layer is positioned between Indium Gallium Arsenide (InGaAs) etch stop layers.
    Type: Application
    Filed: December 31, 2015
    Publication date: April 28, 2016
    Applicant: Futurewei Technologies, Inc.
    Inventors: Hongmin CHEN, Xuejin YAN, Rongsheng MIAO, Xiao SHEN, Zongrong LIU
  • Publication number: 20160062062
    Abstract: A photonic device comprising a base plate, a photonic laser coupled to the base plate, wherein the photonic laser is configured to generate a light, a lens coupled to the base plate, wherein the lens is configured to receive the light from the photonic laser, form a focused light, and pass the focused light to a reflector, and the reflector incorporated with the base plate such that the lens is positioned between the photonic laser and the reflector, wherein the reflector is configured to receive the focused light, and wherein the reflector is configured to steer a first portion of the focused light through the base plate using total internal reflection.
    Type: Application
    Filed: November 11, 2015
    Publication date: March 3, 2016
    Inventors: Rongsheng Miao, Yu Sheng Bai
  • Patent number: 9231361
    Abstract: A monolithically integrated thermal tunable laser comprising a layered substrate comprising an upper surface and a lower surface, and a thermal tuning assembly comprising a heating element positioned on the upper surface, a waveguide layer positioned between the upper surface and the lower surface, and a thermal insulation layer positioned between the waveguide layer and the lower surface, wherein the thermal insulation layer is at least partially etched out of an Indium Phosphide (InP) sacrificial layer, and wherein the thermal insulation layer is positioned between Indium Gallium Arsenide (InGaAs) etch stop layers.
    Type: Grant
    Filed: April 30, 2014
    Date of Patent: January 5, 2016
    Assignee: Futurewei Technologies, Inc.
    Inventors: Hongmin Chen, Xuejin Yan, Rongsheng Miao, Xiao Shen, Zongrong Liu