Patents by Inventor Ronnen Andrew Roy

Ronnen Andrew Roy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7102234
    Abstract: A method of reducing the contact resistance of metal silicides to the p+ silicon area or the n+ silicon area of the substrate comprising: (a) forming a metal germanium (Ge) layer over a silicon-containing substrate, wherein said metal is selected from the group consisting of Co, Ti, Ni and mixtures thereof; (b) optionally forming an oxygen barrier layer over said metal germanium layer; (c) annealing said metal germanium layer at a temperature which is effective in converting at least a portion thereof into a substantially non-etchable metal silicide layer, while forming a Si—Ge interlayer between said silicon-containing substrate and said substantially non-etchable metal silicide layer; and (d) removing said optional oxygen barrier layer and any remaining alloy layer. When a Co or Ti alloy is employed, e.g.
    Type: Grant
    Filed: April 19, 2004
    Date of Patent: September 5, 2006
    Assignee: International Business Machines Corporation
    Inventors: Cyril Cabral, Jr., Roy Arthur Carruthers, James McKell Edwin Harper, Christian Lavoie, Ronnen Andrew Roy, Yun Yu Wang
  • Patent number: 7081676
    Abstract: A method of producing electrical contacts having reduced interface roughness as well as the electrical contacts themselves are disclosed herein. The method of the present invention comprises (a) forming an alloy layer having the formula MX, wherein M is a metal selected from the group consisting of Co and Ni and X is an alloying additive, over a silicon-containing substrate; (b) optionally forming an optional oxygen barrier layer over said alloy layer; (c) annealing said alloy layer at a temperature sufficient to form a MXSi layer in said structure; (d) removing said optional oxygen barrier layer and any remaining alloy layer; and optionally (e) annealing said MXSi layer at a temperature sufficient to form a MXSi2 layer in said structure.
    Type: Grant
    Filed: October 22, 2003
    Date of Patent: July 25, 2006
    Assignee: International Business Machines Corporation
    Inventors: Paul David Agnello, Cyril Cabral, Jr., Roy Arthur Carruthers, James McKell Edwin Harper, Christian Lavoie, Kirk David Peterson, Robert Joseph Purtell, Ronnen Andrew Roy, Jean Louise Jordan-Sweet, Yun Yu Wang
  • Patent number: 6987050
    Abstract: A method (and resulting structure) for fabricating a silicide for a semiconductor device, includes depositing a metal or an alloy thereof on a silicon substrate, reacting the metal or the alloy to form a first silicide phase, etching any unreacted metal, depositing a silicon cap layer over the first silicide phase, reacting the silicon cap layer to form a second silicide phase, for the semiconductor device, and etching any unreacted silicon. The substrate can be either a silicon-on-insulator (SOI) substrate or a bulk silicon substrate.
    Type: Grant
    Filed: July 11, 2001
    Date of Patent: January 17, 2006
    Assignee: International Business Machines Corporation
    Inventors: Cyril Cabral, Jr., Kevin Kok Chan, Guy Moshe Cohen, Christian Lavoie, Ronnen Andrew Roy, Paul Michael Solomon
  • Patent number: 6809030
    Abstract: A method of producing electrical contacts having reduced interface roughness as well as the electrical contacts themselves are disclosed herein. The method of the present invention comprises (a) forming an alloy layer having the formula MX, wherein M is a metal selected from the group consisting of Co and Ni and X is an alloying additives over a silicon-containing substrate; (b) optionally forming an optional oxygen barrier layer over said alloy layer; (c) annealing said alloy layer at a temperature sufficient to form a MXSi layer in said structure; (d) removing said optional oxygen barrier layer and any remaining alloy layer; and optionally (e) annealing said MXSi layer at a temperature sufficient to form a MXSi2 layer in said structure.
    Type: Grant
    Filed: June 28, 2002
    Date of Patent: October 26, 2004
    Assignee: International Business Machines Corporation
    Inventors: Paul David Agnello, Cyril Cabral, Jr., Roy Arthur Carruthers, James McKell Edwin Harper, Christian Lavoie, Kirk David Peterson, Robert Joseph Purtell, Ronnen Andrew Roy, Jean Louise Jordan-Sweet, Yun Yu Wang
  • Publication number: 20040195695
    Abstract: A method of reducing the contact resistance of metal suicides to the p+ silicon area or the n+ silicon area of the substrate comprising: (a) forming a metal germanium (Ge) layer over a silicon-containing substrate, wherein said metal is selected from the group consisting of Co, Ti, Ni and mixtures thereof; (b) optionally forming an oxygen barrier layer over said metal germanium layer; (c) annealing said metal germanium layer at a temperature which is effective in converting at least a portion thereof into a substantially non-etchable metal silicide layer, while forming a Si—Ge interlayer between said silicon-containing substrate and said substantially non-etchable metal silicide layer; and (d) removing said optional oxygen barrier layer and any remaining alloy layer. When a Co or Ti alloy is employed, e.g.
    Type: Application
    Filed: April 19, 2004
    Publication date: October 7, 2004
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Cyril Cabral,, Roy Arthur Carruthers, James McKell Edwin Harper, Christian Lavoie, Ronnen Andrew Roy, Yun Yu Wang
  • Patent number: 6753606
    Abstract: A method of reducing the contact resistance of metal silicides to the p+ silicon area or the n+ silicon area of the substrate comprising: (a) forming a metal germanium (Ge) layer over a silicon-containing substrate, wherein said metal is selected from the group consisting of Co, Ti, Ni and mixtures thereof; (b) optionally forming an oxygen barrier layer over said metal germanium layer; (c) annealing said metal germanium layer at a temperature which is effective in converting at least a portion thereof into a substantially non-etchable metal silicide layer, while forming a Si—Ge interlayer between said silicon-containing substrate and said substantially non-etchable metal silicide layer; and (d) removing said optional oxygen barrier layer and any remaining alloy layer. When a Co or Ti alloy is employed, e.g.
    Type: Grant
    Filed: November 27, 2001
    Date of Patent: June 22, 2004
    Assignee: International Business Machines Corporation
    Inventors: Cyril Cabral, Jr., Roy Arthur Carruthers, James McKell Edwin Harper, Christian Lavoie, Ronnen Andrew Roy, Yun Yu Wang
  • Publication number: 20040087160
    Abstract: A method of producing electrical contacts having reduced interface roughness as well as the electrical contacts themselves are disclosed herein. The method of the present invention comprises (a) forming an alloy layer having the formula MX, wherein M is a metal selected from the group consisting of Co and Ni and X is an alloying additive, over a silicon-containing substrate; (b) optionally forming an optional oxygen barrier layer over said alloy layer; (c) annealing said alloy layer at a temperature sufficient to form a MXSi layer in said structure; (d) removing said optional oxygen barrier layer and any remaining alloy layer; and optionally (e) annealing said MXSi layer at a temperature sufficient to form a MXSi2 layer in said structure.
    Type: Application
    Filed: October 22, 2003
    Publication date: May 6, 2004
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Paul David Agnello, Cyril Cabral, Roy Arthur Carruthers, James McKell Edwin Harper, Christian Lavoie, Kirk David Peterson, Robert Joseph Purtell, Ronnen Andrew Roy, Jean Louise Jordan-Sweet, Yun Yu Wang
  • Patent number: 6727135
    Abstract: A complementary metal oxide semiconductor (CMOS) device having silicide contacts that are self-aligned to deep junction edges formed within a surface of a semiconductor substrate as well as a method of manufacturing the same are disclosed. Specifically, the CMOS device includes a plurality of patterned gate stack regions formed on a surface of a semiconductor substrate. Each plurality of patterned gate stack regions includes an L-shaped nitride spacer formed on exposed vertical sidewalls thereof, the L-shaped nitride spacer having a vertical element and a horizontal element, wherein the horizontal element is formed on a portion of the substrate that abuts each patterned gate stack region. Silicide contacts are located on other portions of the semiconductor substrate between adjacent patterned gate stack regions not containing the horizontal element of the L-shaped nitride spacer.
    Type: Grant
    Filed: June 18, 2003
    Date of Patent: April 27, 2004
    Assignee: International Business Machines Corporation
    Inventors: Kam Leung Lee, Ronnen Andrew Roy
  • Patent number: 6716708
    Abstract: A method (and resultant structure) for forming a metal silicide contact on a silicon-containing region having controlled consumption of said silicon-containing region, includes implanting Ge into the silicon-containing region, forming a blanket metal-silicon mixture layer over the silicon-containing region, reacting the metal-silicon mixture with silicon at a first temperature to form a metal silicon alloy, etching unreacted portions of the metal-silicon mixture layer, forming a blanket silicon layer over the metal silicon alloy layer, annealing at a second temperature to form an alloy of metal-Si2, and selectively etching the unreacted silicon layer.
    Type: Grant
    Filed: November 20, 2002
    Date of Patent: April 6, 2004
    Assignee: International Business Machines Corporation
    Inventors: Cyril Cabral, Jr., Kevin Kok Chan, Guy Moshe Cohen, Kathryn Wilder Guarini, Christian Lavoie, Ronnen Andrew Roy, Paul Michael Solomon
  • Publication number: 20030209765
    Abstract: A complementary metal oxide semiconductor (CMOS) device having silicide contacts that are self-aligned to deep junction edges formed within a surface of a semiconductor substrate as well as a method of manufacturing the same are disclosed. Specifically, the CMOS device includes a plurality of patterned gate stack regions formed on a surface of a semiconductor substrate. Each plurality of patterned gate stack regions includes an L-shaped nitride spacer formed on exposed vertical sidewalls thereof, the L-shaped nitride spacer having a vertical element and a horizontal element, wherein the horizontal element is formed on a portion of the substrate that abuts each patterned gate stack region. Silicide contacts are located on other portions of the semiconductor substrate between adjacent patterned gate stack regions not containing the horizontal element of the L-shaped nitride spacer.
    Type: Application
    Filed: June 18, 2003
    Publication date: November 13, 2003
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kam Leung Lee, Ronnen Andrew Roy
  • Patent number: 6614079
    Abstract: A complementary metal oxide semiconductor (CMOS) device having silicide contacts that are self-aligned to deep junction edges formed within a surface of a semiconductor substrate as well as a method of manufacturing the same are disclosed. Specifically, the CMOS device includes a plurality of patterned gate stack regions formed on a surface of a semiconductor substrate. Each plurality of patterned gate stack regions includes an L-shaped nitride spacer formed on exposed vertical sidewalls thereof, the L-shaped nitride spacer having a vertical element and a horizontal element, wherein the horizontal element is formed on a portion of the substrate that abuts each patterned gate stack region. Silicide contacts are located on other portions of the semiconductor substrate between adjacent patterned gate stack regions not containing the horizontal element of the L-shaped nitride spacer.
    Type: Grant
    Filed: July 19, 2001
    Date of Patent: September 2, 2003
    Assignee: International Business Machines Corporation
    Inventors: Kam Leung Lee, Ronnen Andrew Roy
  • Publication number: 20030132487
    Abstract: A method (and resultant structure) for forming a metal silicide contact on a silicon-containing region having controlled consumption of said silicon-containing region, includes implanting Ge into the silicon-containing region, forming a blanket metal-silicon mixture layer over the silicon-containing region, reacting the metal-silicon mixture with silicon at a first temperature to form a metal silicon alloy, etching unreacted portions of the metal-silicon mixture layer, forming a blanket silicon layer over the metal silicon alloy layer, annealing at a second temperature to form an alloy of metal-Si2, and selectively etching the unreacted silicon layer.
    Type: Application
    Filed: November 20, 2002
    Publication date: July 17, 2003
    Applicant: International Business Machines Corporation
    Inventors: Cyril Cabral, Kevin Kok Chan, Guy Moshe Cohen, Kathryn Wilder Guarini, Christian Lavoie, Ronnen Andrew Roy, Paul Michael Solomon
  • Patent number: 6555880
    Abstract: A semiconductor structure includes raised source and drain regions, where the raised source and drain regions are facet free and unconstrained to have a shape conforming to a same crystallographic axes with respect to each other.
    Type: Grant
    Filed: June 7, 2001
    Date of Patent: April 29, 2003
    Assignee: International Business Machines Corporation
    Inventors: Cyril Cabral, Jr., Kevin Kok Chan, Guy Moshe Cohen, Kathryn Wilder Guarini, Christian Lavoie, Ronnen Andrew Roy, Paul Michael Solomon
  • Publication number: 20030068883
    Abstract: A method of forming a semiconductor substrate (and resultant structure), includes providing a semiconductor substrate to be silicided including a source and drain formed therein on respective sides of a gate, depositing a metal film over the gate, source and drain regions, reacting the metal film with Si at a first predetermined temperature, to form a metal-silicon alloy, etching the unreacted metal, depositing a silicon film over the source drain and gate regions, annealing the substrate at a second predetermined temperature, to form a metal-Si2 alloy, and selectively etching the unreacted Si.
    Type: Application
    Filed: November 5, 2002
    Publication date: April 10, 2003
    Applicant: International Business Machines Corporation
    Inventors: Atul Champaklal Ajmera, Cyril Cabral, Roy Arthur Carruthers, Kevin Kok Chan, Guy Moshe Cohen, Paul Michael Kozlowski, Christian Lavoie, Joseph Scott Newbury, Ronnen Andrew Roy
  • Publication number: 20030015762
    Abstract: A complementary metal oxide semiconductor (CMOS) device having silicide contacts that are self-aligned to deep junction edges formed within a surface of a semiconductor substrate as well as a method of manufacturing the same are disclosed. Specifically, the CMOS device includes a plurality of patterned gate stack regions formed on a surface of a semiconductor substrate. Each plurality of patterned gate stack regions includes an L-shaped nitride spacer formed on exposed vertical sidewalls thereof, the L-shaped nitride spacer having a vertical element and a horizontal element, wherein the horizontal element is formed on a portion of the substrate that abuts each patterned gate stack region. Silicide contacts are located on other portions of the semiconductor substrate between adjacent patterned gate stack regions not containing the horizontal element of the L-shaped nitride spacer.
    Type: Application
    Filed: July 19, 2001
    Publication date: January 23, 2003
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kam Leung Lee, Ronnen Andrew Roy
  • Patent number: 6503833
    Abstract: A method of forming a semiconductor substrate (and resultant structure), includes providing a semiconductor substrate to be silicided including a source and drain formed therein on respective sides of a gate, depositing a metal film over the gate, source and drain regions, reacting the metal film with Si at a first predetermined temperature, to form a metal-silicon alloy, etching the unreacted metal, depositing a silicon film over the source drain and gate regions, annealing the substrate at a second predetermined temperature, to form a metal-Si2 alloy, and selectively etching the unreacted Si.
    Type: Grant
    Filed: November 15, 2000
    Date of Patent: January 7, 2003
    Assignee: International Business Machines Corporation
    Inventors: Atul Champaklal Ajmera, Cyril Cabral, Jr., Roy Arthur Carruthers, Kevin Kok Chan, Guy Moshe Cohen, Paul Michael Kozlowski, Christian Lavoie, Joseph Scott Newbury, Ronnen Andrew Roy
  • Publication number: 20020185691
    Abstract: A method (and resultant structure) for forming a metal silicide contact on a silicon-containing region having controlled consumption of said silicon-containing region, includes implanting Ge into the silicon-containing region, forming a blanket metal-silicon mixture layer over the silicon-containing region, reacting the metal-silicon mixture with silicon at a first temperature to form a metal silicon alloy, etching unreacted portions of the metal-silicon mixture layer, forming a blanket silicon layer over the metal silicon alloy layer, annealing at a second temperature to form an alloy of metal-Si2, and selectively etching the unreacted silicon layer.
    Type: Application
    Filed: June 7, 2001
    Publication date: December 12, 2002
    Applicant: International Business Machines Corporation
    Inventors: Cyril Cabral, Kevin Kok Chan, Guy Moshe Cohen, Kathryn Wilder Guarini, Christian Lavoie, Ronnen Andrew Roy, Paul Michael Solomon
  • Publication number: 20020182836
    Abstract: A method of producing electrical contacts having reduced interface roughness as well as the electrical contacts themselves are disclosed herein. The method of the present invention comprises (a) forming an alloy layer having the formula MX, wherein M is a metal selected from the group consisting of Co and Ni and X is an alloying additives over a silicon-containing substrate; (b) optionally forming an optional oxygen barrier layer over said alloy layer; (c) annealing said alloy layer at a temperature sufficient to form a MXSi layer in said structure; (d) removing said optional oxygen barrier layer and any remaining alloy layer; and optionally (e) annealing said MXSi layer at a temperature sufficient to form a MXSi2layer in said structure.
    Type: Application
    Filed: June 28, 2002
    Publication date: December 5, 2002
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Paul David Agnello, Cyril Cabral, Roy Arthur Carruthers, James McKell Edwin Harper, Christian Lavoie, Kirk David Peterson, Robert Joseph Purtell, Ronnen Andrew Roy, Jean Louise Jordan-Sweet, Yun Yu Wang
  • Publication number: 20020151158
    Abstract: Complementary metal oxide semiconductor (CMOS) devices having metal silicide contacts that withstand the high temperature anneals used in activating the source/drain regions of the devices are provided by adding at least one alloying element to an initial metal layer used in forming the silicide.
    Type: Application
    Filed: June 11, 2002
    Publication date: October 17, 2002
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Cyril Cabral, Roy Arthur Carruthers, James McKell Edwin Harper, Paul Michael Kozlowski, Christian Lavoie, Joseph Scott Newbury, Ronnen Andrew Roy
  • Patent number: 6440851
    Abstract: A method of producing electrical contacts having reduced interface roughness as well as the electrical contacts themselves are disclosed herein. The method of the present invention comprises (a) forming an alloy layer having the formula MX, wherein M is a metal selected from the group consisting of Co and Ni and X is an alloying additive, over a silicon-containing substrate; (b) optionally forming an optional oxygen barrier layer over said alloy layer; (c) annealing said alloy layer at a temperature sufficient to form a MXSi layer in said structure; (d) removing said optional oxygen barrier layer and any remaining alloy layer; and optionally (e) annealing said MXSi layer at a temperature sufficient to form a MXSi2 layer in said structure.
    Type: Grant
    Filed: October 12, 1999
    Date of Patent: August 27, 2002
    Assignee: International Business Machines Corporation
    Inventors: Paul David Agnello, Cyril Cabral, Jr., Roy Arthur Carruthers, James McKell Edwin Harper, Christian Lavoie, Kirk David Peterson, Robert Joseph Purtell, Ronnen Andrew Roy, Jean Louise Jordan-Sweet, Yun Yu Wang